Proteomic Approaches to the Diagnosis, Treatment, and Monitoring of Cancer

  • Julia D. Wulfkuhle
  • Cloud P. Paweletz
  • Patricia S. Steeg
  • Emanuel F. PetricoinIII
  • Lance Liotta
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 532)


The field of proteomics holds promise for the discovery of new biomarkers for the early detection and diagnosis of disease, molecular targets for therapy and markers for therapeutic efficacy and toxicity. A variety of proteomics approaches may be used to address these goals. Two-dimensional gel electrophoresis (2D-PAGE) is the cornerstone of many discovery-based proteomics studies. Technologies such as laser capture microdissection (LCM) and highly sensitive MS methods are currently being used together to identify greater numbers of lower abundance proteins that are differentially expressed between defined cell populations. Newer technologies such as reverse phase protein arrays will enable the identification and profiling of target pathways in small biopsy specimens. Surface-enhanced laser desorption/ionization time-of-flight (SELDI-TOF) analysis enables the high throughput characterization of lysates from very few tumor cells or body fluids and may be best suited for diagnosis and monitoring of disease. Such technologies are expected to supplement our arsenal of mRNA-based assays, and we believe that in the future, entire cellular networks and not just a single deregulated protein will be the target of therapeutics and that we will soon be able to monitor the status of these pathways in diseased cells before, during and after therapy.


Ovarian Cancer Laser Capture Microdissection Lower Abundance Protein Reverse Phase Protein Array Ethylene Vinyl Acetate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Steiner, S. and Witsmann, F. Proteomics: Applications and opportunities in preclinical drug development., Electrophoresis.21:2099–2104, 2000.PubMedCrossRefGoogle Scholar
  2. 2.
    Celis, J., Kruhoffer, M., Gromova, I., Frederiksen, C., Ostergaard, M., Thykjaer, T., Gromov, P., Yu, J., Palsdottir, H., Magnusson, N., and Orntoft, T. Gene expression profiling: Monitoring transcription and translation products using DNA microarrays and proteomics., FEBS Lett.480:2–16, 2000.PubMedCrossRefGoogle Scholar
  3. 3.
    Oda, Y., Nagasu, T., and Chait, B. Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome., Nat. Biotech.19:379–382, 2001.CrossRefGoogle Scholar
  4. 4.
    Ducret, A., Desponts, C., Desmarais, S., Gresser, M., and Ramachandran, C. A general method for the rapid characterization of tyrosine-phosphorylated proteins by mini two-dimensional gel electrophoresis., Electrophoresis.21:2196–2208, 2000.PubMedCrossRefGoogle Scholar
  5. 5.
    Larsson, T., Bergstrom, J., Nilsson, J., and Karlsson, K. Use of an affinity proteomics approach for the identification of low-abundant bacterial adherins as applied on the Lewis(b) binding adhesin of Helicobacter pylori., FEBS Lett.469:155–158, 2000.PubMedCrossRefGoogle Scholar
  6. 6.
    Charlwood, J., Skehel, J., and Camilleri, P. Analysis of N-linked oligosaccharides released from glycoproteins separated by two-dimensional gel electrophoresis., Anal. Biochem.284:49–59, 2000.PubMedCrossRefGoogle Scholar
  7. 7.
    Fivaz, M., Vilbois, F., Pasquali, C., and vanderGoot, F. Analysis of glycosyl phosphatidylinositol-anchored proteins by two-dimensional gel electrophoresis., Electrophoresis.21:3351–3356, 2000.PubMedCrossRefGoogle Scholar
  8. 8.
    Lopez, M., Kristal, B., Chernokalskaya, E., Lazarev, A., Shestopalov, A., Bogdanove, A., and Robinson, M. High-throughput profiling of the mitochondrial proteome using affinity fractionation and automation., Electrophoresis.21:3427–3440, 2000.PubMedCrossRefGoogle Scholar
  9. 9.
    Koe, E., Burkhart, W., Blackburn, K., Koc, H., Moseley, A., and Spremulli, L. Identification of four proteins from the small subunit of the mammalian mitochondrial ribosome using a proteomics approach., Protein Sci.10:471–481, 2001.CrossRefGoogle Scholar
  10. 10.
    Godovac-Zimmerman, J., Sockic, V., Poznanovic, S., and Brianza, F. Functional proteomics of signal transduction by membrane receptors., Electorphoresis.20:952–961, 1999.CrossRefGoogle Scholar
  11. 11.
    Kidd, D., Liu, Y., and Cravatt, B. Profiling serine hydrolase activities in complex proteomes., Biochem.40:4005–4015, 2001.CrossRefGoogle Scholar
  12. 12.
    Adam, G., Cravatt, B., and Sorensen, E. Profiling the specific reactivity of the proteome with non-directed activity-based probes., Chemistry and Biol.8:81–95, 2001.CrossRefGoogle Scholar
  13. 13.
    Lewis, T., Hunt, J., Aveline, L., Jonscher, K., Louie, D., Yeh, J., Nahreini, T., Resing, K., and Ahn, N. Identification of novel MAP kinase pathway signaling targets by functional proteomics and mass spectroscopy., Mol. Cell.6:1343–1354, 2000.Google Scholar
  14. 14.
    Ilag, L., Ng, J., and Jay, D. Chromophore-assisted laser inactivation (CALI) to validate drug targets and pharmacogenomic markers., Drug Dev’t. Res49:65–73, 2000.Google Scholar
  15. 15.
    Chambers, G., Lawrie, L., Cash, P., and Murray, G. Proteomics: A new approach to the study of disease., J. Pathol.192:280–288, 2000.PubMedCrossRefGoogle Scholar
  16. 16.
    Rudert, F. Genomics and proteomics tools for the clinic., Curr. Opinion in Mol. Therapeutics.2:633–642, 2000.Google Scholar
  17. 17.
    Hanash, S. Opermics: Molecular analysis of tissues from DNA to RNA to protein., Clin. Chem. and Lab. Med.38:805–813, 2000.Google Scholar
  18. 18.
    Emmert-Buck, M., Bonner, R., Smith, P., Chuaqui, R., Zhuang, Z., Goldstein, S., Weiss, R., and Liotta, L. Laser capture microdissection., Science.274:998–1001., 1996.PubMedCrossRefGoogle Scholar
  19. 19.
    Wulfkuhle, J., Sgroi, D., Krutzsch, H., McLean, K., McGarvey, K., Knowlton, M., Chen, S., Shu, H., Sahin, A.. Kurek, R., Wallwiener, D., Merino, M., Petricoin, E., Zhao, Y., and Steeg, P. Proteomics of human breast ductal carcinoma in situ (DCIS). In press., 2002.Google Scholar
  20. 20.
    Ornstein, D., Gillespie, J., Paweletz, C., Duray, P., Herring, J., Vocke, C., Topalian, S., Bostwick, D., Linehan, W., III, E. P., and Emmert-Buck, M. Proteomic analysis of laser capture microdissected human prostate cancer and in vitro prostate cell lines., Electrophoresis.21:2235–2242, 2000.PubMedCrossRefGoogle Scholar
  21. 21.
    Banks, R., Dunn, M., Forbes, M., Stanley, A., Pappin, D., naven, T., Gough, M., Harnden, P., and Selby, P. The potential use of laser capture microdissection to selectively obtain distinct populations of cells forproteomic analysis - Preliminary findings., Electrophoresis.20:689–700, 1999.PubMedCrossRefGoogle Scholar
  22. 22.
    Eggling, F. v., Davies, H., Loms, L., Fiedler, W., Junker, K., Claussen, U., and Ernst, G. Tissue specific microdissection coupled with ProteinChip(R)array technologies: Applications in cancer research., Biotechniques.29:1066–1070, 2000.Google Scholar
  23. 23.
    Gillespie. J., Ahram, M., Best, C., Swalwell, J., Krizman, D., Petricoin, E., Liotta, L., and Emmert-Buck, M. The role of tissue microdissection in cancer research, Cancer J.7:32–39, 2001.Google Scholar
  24. 24.
    Hutchens, T. and Yip, T. New desorption strategies for the mass spectrometric analysis of macromolecules., Rapid Commun. Mass Spectrom.7:576–580, 1993.CrossRefGoogle Scholar
  25. 25.
    Merchant, M. and Weinberger, S. Recent advancements in surface-enhanced laser desorption/ionization time-of-flight mass spectometry., Electrophoresis.21:1164–1167, 2000.PubMedCrossRefGoogle Scholar
  26. 26.
    Isaaq, H., Veenstra, T., Conrads, T. and Felschow, D. The SELDI-TOF MS approach to proteomics: Protein profiling and biomarker identification., Biochem. Biophys. Res. Commun.292:587–592, 2002.Google Scholar
  27. 27.
    Paweletz, C., Gillespie, J., Ornstein, D., Simone, N., Brown, M., Cole, K., Kohn, E., Linehan, W., Weber, T., Taylor, P., Emmert-Buck, M., Liotta, L., and Petricoin III, E. Rapid protein display profiling of cancer progression directly from human tissue using a protein biochip., Drug Dev’t. Res.49:34–42, 2000.Google Scholar
  28. 28.
    Vlahou, A., Schellhammer, P., Mendrinos, S., Patel, K., Kondlyis, F., Gong, L., Nasim, S. and Wright, Jr., G. Development of a novel proteomic approach for the detection of transitional cell carcinoma of the bladder in urine., Amer. J. Pathol.158:1491–1502, 2001.CrossRefGoogle Scholar
  29. 29.
    Li, J., Zhang, Z., Rosenzweig, J., Wang, Y., and Chan, D. Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer., Clin. Chem.48:1296–1304, 2002.Google Scholar
  30. 30.
    Petricoin III, E., Ardekani, A., Hitt, B., Levine, P., Fusaro, V., Steinberg, S., Mills, G., Simone. C., Fishman, D., Kohn, E. and Liotta, L. Use of proteomic patterns inserum to identify ovarian cancer., Lancet.359:572–577, 2002.Google Scholar
  31. 31.
    Ozols, R., Rubin, S., Thomas, G. and Robboy, S. Epithelial ovarian cancer. In: Principles and practice of gynecologic oncology. Hoskins, W., Perez, C. and Young, R., eds. Philadelphia: Lippincott Williams and Wilkins. 981–1058, 2000.Google Scholar
  32. 32.
    Petricoin III, E., Zoon, K., Kohn, E., Barrett, C. and Liotta, L. Clinical proteomics: Translating benchside promise into bedside reality. Nat. Drug Disc.1:683–695, 2002.CrossRefGoogle Scholar
  33. 33.
    Paweletz, C., Charboneau, L., Bichsel, V., Simone, N., Chen, T., Gillespie, J., Emmert-Buck, M., Roth, M., III, E. P., and Liotta, L. Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front., Oncogene.20:1981–1989, 2001.PubMedCrossRefGoogle Scholar
  34. 34.
    Torhorst, J., Bucher, C., Kononen, J., Haas, P., Zuber, M., Kochli, O., Mross, F., Dieterich, H., Moch, H., Mihatsch, M., Kallioneimi, O. and Sauter, G. Tissue microarrays for rapid linking of molecular changes to clinical endpoints., Amer. J. Pathol.159:2249–2256, 2001.Google Scholar
  35. 35.
    Knezevic, V., Leethanakul, C., Bichsel, VI, Worth, J., Prabhu, V., Gutkind, J., Liotta, L., Munson, P., Petricoin III, E. and Krizman, D. Proteomic profiling of the cancer micorenvironment by antibody arrays., Proteomics.1:1271–1278, 2001.PubMedCrossRefGoogle Scholar
  36. 36.
    Sreekumar, A., Nyati, M., Varambally, S., Barrette, T., Ghosh, D., Lawrence, T. and Chinniyan, A. Profiling of cancer cells using protein microarrays: Discovery of novel radiation-regulated proteins., Cancer Res.61:7585–93, 2001.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Julia D. Wulfkuhle
    • 1
  • Cloud P. Paweletz
    • 1
    • 4
  • Patricia S. Steeg
    • 2
  • Emanuel F. PetricoinIII
    • 3
  • Lance Liotta
    • 1
  1. 1.FDA/NCI Clinical Proteomics Program, Laboratory of PathologyCenter for Cancer Research, National Cancer InstituteBethesdaUSA
  2. 2.Women’s Cancers Section, Laboratory of PathologyCenter for Cancer Research, National Cancer InstituteBethesdaUSA
  3. 3.FDA/NCI Clinical Proteomics ProgramCenter for Biologics Evaluation and Research, Food and Drug AdministrationBethesdaUSA
  4. 4.Department of Anatomy, Physiology, and GeneticsInstitute for Molecular Medicine, Uniformed Services School of MedicineBethesdaUSA

Personalised recommendations