Submerged Paleolandscapes: Site GNL Quintero 1 (GNLQ1) and the First Evidences from the Pacific Coast of South America

  • aDiego Carbias
  • Isabel Cartajena
  • Renato Simonetti
  • Patricio López
  • Carla Morales
  • Cristina Ortega


In this chapter, the authors present research conducted on GNL Quintero 1 (GNLQ1), a Late Pleistocene paleontological submerged site located on the Pacific coast of Central Chile (32°46′S). GNLQ1, located 650 m offshore and 13 m underwater, was discovered and test excavated as part of a Cultural Resource Management (CRM) project. The authors describe the research method and strategies applied and the results obtained so far. By combining geological, geomorphological, bathymetrical, sedimentological, and paleontological data with a digital simulation model, they suggest that by c. 16,000 cal BP, a significant part of Quintero Bay was exposed and GNLQ1 would have been located several kilometers inland as the paleoshoreline was farther out on the continental shelf. In light of this new evidence they discuss the known association between extinct megafauna and early human adaptations in the area. Despite the fact that no human agency has been inferred, the similarities of the extinct faunal assemblage with prehistoric sites on land are suggestive and encourage further research. They conclude GNLQ1 provides the first unambiguous evidence that this record can survive in situ and be located through underwater investigation, thus offering insight into a submerged paleolandscape viable for human occupation and transit along the Pacific Coast of South America during the Late Pleistocene.


Submerged paleolandscape Pacific South America Chile Prehistoric archaeology Underwater archaeology CRM Continental shelf Pleistocene Faunal analysis 



We would like to thank Nicholas Flemming, Joe Flatman, and Amanda Evans for inviting us to contribute in this volume. Giorgo Spada kindly provided the GIA curve for Quintero Bay using the SELEN 3.2 model. David Letelier provided underwater photography images and Álvaro López prepared laboratory photography images. This study has been financially supported by GNL Quintero S.A.


  1. ARKA Consultores. (2008). Evaluación Arqueológica Subacuática Sitio GNL Quintero 1, Proyec- to “Terminal de GNL en Quintero”, Comuna de Quintero, V Región de Valparaíso, report prepared for SGA Ltda. September 2008.Google Scholar
  2. Bailey, G. N., & Flemming, N. C. (2008). Archaeology of the continental shelf: Marine resources, submerged landscapes and underwater archaeology. Quaternary Science Reviews, 27(23–24), 2153–2165.CrossRefGoogle Scholar
  3. Behrensmeyer, A. K., & Hill, A. (1980). Fossils in the Making: Vertebrate Taphonomy and Paleo- ecology. Chicago: University of Chicago Press.Google Scholar
  4. Bickel, P. M. (1978). Changing sea levels along the California coast: Anthropological implications. Journal of California Anthropology, 5(1), 6–20.Google Scholar
  5. Bonnichsen, R., Lepper, B., Stanford D., & Waters, M. (2005). Paleoamerican origins: Beyond Clovis. Orono: Center for the study of the first Americans, Texas University Press.Google Scholar
  6. Borrero, L. (1999). The prehistoric exploration and colonization of Fuego-Patagonia. Journal of World Prehistory, 13, 321–355.CrossRefGoogle Scholar
  7. Borrero, L. A., & Martin, F. (1996). Tafonomía de Carnívoros: un Enfoque Regional. In J. Gómez Otero (Ed.), Arqueología Solo Patagonia. Segundas Jornadas de Arqueología de la Patagonia (pp. 189–198). Puerto Madryn: Centro Nacional Patagónico.Google Scholar
  8. Borrego, J., Monterde, J., Morales, J. A., Carro, B., & López, N. (2003). Morfología de la pirita diagenética en sedimentos recientes de estuario del Río Odiel (SO de España). Geogaceta, 33, 99–101.Google Scholar
  9. Bronk Ramsey, C. & Lee, S. (2013). Recent and planned developments of the program OxCal, Radiocarbon 55, 3–4.Google Scholar
  10. Brown, A., Ellis, C., & Roseff, R. (2010). Holocene sulphur-rich palaeochannel sediments: Diagenetic conditions, magnetic properties and archaeological implications. Journal of Archaeological Science, 37(1), 21–29.CrossRefGoogle Scholar
  11. Cartajena, I., & López, P. (2008). Análisis de Arqueofauna, in ARKA Consultores 2008. Eva- luación Arqueológica Subacuática Sitio GNL Quintero 1, Proyecto “Terminal de GNL en Quintero”, Comuna de Quintero, V Región de Valparaíso. September 2008.Google Scholar
  12. Cartajena, I., López, P., Carabias, D., Morales C., & Vargas, G. (2011). Arqueología Subacuática y Tafonomía: Recientes Avances en el Estudio de Sitios Finipleistocénicos Sumergidos en la Costa Pacífica de Chile Central, Antípoda, 13, 201–225.CrossRefGoogle Scholar
  13. Cartajena, I., López, P., Carabias, D., Morales, C., Vargas, G., & Ortega, C. (2013). First evidences of an underwater final pleistocene terrestrial extinct faunal bone assemblage from central Chile (South America): Taxonomic and taphonomic analyses. Quaternary International 305, 45–55.Google Scholar
  14. Davis, L. G., Jenevein, S. A., Punke, M. L., Noller, J. S., Jones, J. A., & Willis, S. C. (2009). Geoarchaeological themes in a dynamic coastal environment, lincoln and lane counties, oregon. In J. E. O’Connor, R. J. Dorsey, & I. P. Madin (Eds.), Volcanoes to vineyards: Geologic field trips through the dynamic landscape of the Pacific Northwest (pp. 331–348). Geological Society of America Field Guide 15.Google Scholar
  15. Dillehay, T. (2000). The settlement of the Americas: A New prehistory. New York: Basic Books.Google Scholar
  16. Dillehay, T. (2009). Probing deeper into first American studies. Proceedings of the National Academies of Science of the United States of America, 106(4), 971–978.Google Scholar
  17. Dixon, E. J. (2001). Human colonization of the Americas: Timing, technology and process. Quaternary Science Reviews, 20, 277–299.CrossRefGoogle Scholar
  18. Dunbar, J., Webb, D., & Cring, D. (1989). Culturally and naturally modified bones from a Paleoindian site in the Aucilla River, North Florida. In R. Bonnichsen & M. Sorg (Eds.), Bone modifications (pp. 473–497). Orono: Peopling the Americas Publications, Center for the Study of the First Americans, University of Maine.Google Scholar
  19. Easton, N. A., & Moore, C. (1991). Test excavations of subtidal deposits at Montague Harbour, British Columbia. International Journal of Nautical Archaeology, 20, 269–280.CrossRefGoogle Scholar
  20. Encinas, A., Hervé, F., Villa-Martínez, R., Nielsen, S., Finger, K. L., & Peterson, D. E. (2006). Finding of a Holocene marine layer in Algarrobo (33°22’S), Central Chile. Implications for coastal uplift. Revista Geológica de Chile, 33, 339–345.Google Scholar
  21. Erlandson, J. M., Moss, M. L., & Des Lauriers, M. (2008). Life on the edge: Early maritime cultures of the Pacific coast of North America. Quaternary Science Reviews, 27, 2232–2245.CrossRefGoogle Scholar
  22. Fairbanks, R. G. (1989). A 17,000-year Glacio Eustatic sea level record: Influence of glacial melting rates on the younger Dryas event and the deep ocean circulation. Nature, 342, 637–642.CrossRefGoogle Scholar
  23. Faught, M. K. (2004). The underwater archaeology of Paleolandscapes, Apalachee bay, Florida. American Antiquity, 69(2), 275–289.CrossRefGoogle Scholar
  24. Faught, M. K. (2008). Archaeological roots of human diversity in the new world: A compilation of accurate and precise radiocarbon ages from earliest sites. American Antiquity, 73, 670–698.Google Scholar
  25. Faught, M. K., & Gusick, A. (2011). Submerged prehistory in the Americas. In J. Benjamin, C. Bonsall, C. Pickard, & A. Fisher (Eds.), Submerged prehistory (pp. 145–157). Oxford: Ox-bow Books.Google Scholar
  26. Fedje, D. W, & Christensen, T. (1999). Modeling Paleoshorelines and locating early Holocene coastal sites in Haida Gwaii. American Antiquity, 64(4), 635–652.CrossRefGoogle Scholar
  27. Fedje, D. W., & Johsenhans, H. (2000). Drowned forests and archaeology on the continental shelf of British Columbia, Canada. Geology, 28(2), 99–102.CrossRefGoogle Scholar
  28. Fladmark, K. R. (1979). Routes: Alternative migration corridors for early man in North America. American Antiquity, 44, 55–69.CrossRefGoogle Scholar
  29. Goebel, T., Waters, M., & O’Rourke, D. (2008). The late Pleistocene dispersal of modern Hu- ans in the Americas. Science, 319, 1497–1502.CrossRefGoogle Scholar
  30. Gusick, A., & Faught, M. K. (2011). Prehistoric archaeology underwater: A nascent subdiscipline critical to understanding early coastal occupations and migration routes. In N. F. Bicho et al. (Eds.), Trekking the shore: changing coastlines and the antiquity of coastal settlement (pp. 27–50). New York: Springer.Google Scholar
  31. Hamilton, D. L. (1998). Methods of conserving underwater archaeological material culture. Conservation files: ANTH 605, conservation of cultural resources I. Nautical archaeology program, Texas A & M University, world wide web. Accessed Oct 2012.
  32. Haynes, G. (1983a). A guide for differentiating mammalian carnivores taxa responsible for gnaw damage to herbivore limb bones. Paleobiology, 9(2), 164–172.Google Scholar
  33. Haynes, G. (1983b). Frequencies of spiral and greenbone fractures on ungulate limb bones in modern surface assemblages. American Antiquity, 48(1), 102–114.CrossRefGoogle Scholar
  34. Inman, D. L. (1983). Aplication of coastal dynamics to the reconstruction of paleocoastlines in the vicinity of La Jolla, California. In P. M. Masters and N. C. Flemming (Eds.), Quaternary Coastlines and Marine Archaeology (pp. 1–49). Academic Press, London.Google Scholar
  35. Jackson, D. (2003). Evaluating evidence of cultural associations of Mylodon in the semiarid region of Chile. In L. Miotti, M. Salemme, & N. Flagenheimer (Eds.), Where the south wind blows: Ancient evidence of Paleo South American (pp. 77–81). Austin: Center for the study of the first Americans, Texas University Press.Google Scholar
  36. Jackson, D., Méndez, C., & De Souza, P. (2004). Poblamiento Paleoindio en el Norte-Centro de Chile: Evidencias, Problemas y Perspectivas. Complutum, 15, 165–176.Google Scholar
  37. Jackson, D., Méndez, C., Seguel, R., Maldonado, R. A., & Vargas, G. (2007). Initial occupation of the Pacific coast of Chile during late Pleistocene times. Current Anthropology, 48(5), 725–731.CrossRefGoogle Scholar
  38. Johnson, L., & Stright, M. (Eds.). (1992). Paleoshorelines and prehistory: An investigation of method. Boca Raton: CRC Press.Google Scholar
  39. Josenhans, H., Fedje, D., Pienitz, R., & Southon, J. (1997). Early humans and rapidly changing Holocene sea levels in the Queen Charlotte Islands-Hecate Strait British Columbia, Canada. Science, 277, 71–74.CrossRefGoogle Scholar
  40. Kim, J., Schneider, R., Hebbeln, D., Muller, P., & Wefer, G. (2002). Last deglacial sea-surface temperature evolution in the southeast Pacific compared to climate changes on the south American continent. Quaternary Science Reviews, 21, 2085–2097.CrossRefGoogle Scholar
  41. Lambeck, K., Esat, T. M., & Potter, E. K. (2002). Links between climate and sea levels for the past three million years. Nature, 419, 199–206.CrossRefGoogle Scholar
  42. Leonard, E. M., & Wehmiller, J. F. (1991). Geochronology of marine terraces at Caleta Michilla, Northern Chile; Implications for late Pleistocene and Holocene uplift. Revista Geológica de Chile, 18(1), 81–86.Google Scholar
  43. López, P., Labarca, R., & Núñez, L. (2004). Nivel Quereo I: una Discusión Acerca del Poblamiento Temprano en la Provincia del Choapa: Revista. Werkén, 5, 15–20.Google Scholar
  44. López, P., Cartajena, I., Olivares, G., López, O., Carabias, D., & Morales, C. (2012). Aplicación de Microscopio Electrónico de Barrido (MEB) y Espectroscopia de Energía Dispersiva (EDS) para Distinguir Alteraciones Termicas en Restos Osteofaunísticos de un Sitio Sumergido del Pleistoceno Final de la Costa de Chile Central. In A. Acosta (Ed.), Estudios Tafonómicos y Zooarqueológicos (II), Temas de Arqueología 3. Instituto Nacional de Antropología y Pen- samiento Latinoamericano.Google Scholar
  45. Mandryk, C. A. S., Josenhans, H., Fedje, D. W., & Mathewes, R. W. (2001). Late quaternary Paleoenvironments of northwestern North America: Implications for inland versus coastal migration routes. Quaternary Science Reviews, 20, 301–314.CrossRefGoogle Scholar
  46. Masters, P. M. (1983). Detection and assessment of prehistoric artifact sites off the coast of southern California. In P. M. Masters & N. C. Flemming (Eds.), Quaternary coastlines and marine archaeology (pp. 189–213). London: Academic Press.Google Scholar
  47. Masters, P. M. & Flemming, N. C. (1983). Quaternary coastlines and marine archaeology: Towards the prehistory of land bridges and continental shelves. London: Academic Press.Google Scholar
  48. Masters, P. M. (1985). California coastal evolution and the La Jollans. Oceanus, 28, 27–33.Google Scholar
  49. Méndez, C., Jackson, D., & Seguel, R. (2004). Narrowing the spatial range of Megafaunal distributions on the semiarid coast of Chile. Current Research in the Pleistocene, 21, 109–111.Google Scholar
  50. Méndez, C. (2011). Tecnología Lítica en Poblamiento Pleistoceno Terminal del Centro de Chile. Organización, Gestos y Saberes. PhD thesis, Universidad Católica del Norte, Universidad de Tarapacá, Chile.Google Scholar
  51. Morales, C. (2008). Conservación y Catalogación de Materiales. In ARKA Consultores 2008. Evaluación Arqueológica Subacuática Sitio GNL Quintero 1. September 2008.Google Scholar
  52. Myers, T., Voorhies, M., & Georde, C. (1980). Spiral fractures and bone Pseudotools at Paleontological sites. American Antiquity, 45(3), 483–490.CrossRefGoogle Scholar
  53. Noakes, S., Garrison, E., & McFall, G. (2009). Underwater Paleontology: Recovery of a prehistoric Whale mandible offshore Georgia. In N. W. Pollock (Ed.), Proceedings of the American Academy of Underwater Sciences 28th Symposium (pp. 245–251). Atlanta: American Academy of Underwater Sciences.Google Scholar
  54. Núñez, L., Varela, J., & Casamiquela, R. (1987). Ocupación Paleoindia en el Centro-Norte de Chile: Adaptación Circunlacustre en las Tierras Bajas. Estudios Atacameños, 8, 137–181.Google Scholar
  55. Núñez, L., Varela, J., Casamiquela, R., Schiappacasse, V., Niemeyer, H., & Villagrán, C. (1994a). Cuenca de Taguatagua en Chile: el Ambiente del Pleistoceno Superior y Ocupaciones Humanas. Revista Chilena de Historia Natural, 67, 503–519.Google Scholar
  56. Núñez, L., Varela, J., Casamiquela, R., & Villagrán, C. (1994b). Reconstrucción Multidisciplinaria de la Ocupación Prehistórica de Quereo, Centro de Chile. Latin American Antiquity, 5(2), 99–118.CrossRefGoogle Scholar
  57. Ota, Y., & Paskoff, R. (1993). Holocene deposits on the coast of north-central Chile: Radiocarbon ages and implications for coastal changes. Revista Geológica de Chile, 20(1), 25–32.Google Scholar
  58. Richardson, J. B. III. (1981). Modeling the development of sedentary maritime economies in the coast of Peru. Annals of Carnegie Museum, 50, 139–150.Google Scholar
  59. Saheb, M., Neff, D., Dillmann, P. H., Matthiesen, H., & Foy, E. (2008). Long-term corrosion behaviour of low-carbon steel in anoxic environment: Characterisation of archaeological artefacts. Journal of Nuclear Materials, 379(1–3), 118–123.CrossRefGoogle Scholar
  60. Sandweiss, D. (2003). Terminal Pleistocene through mid-Holocene archaeological sites as Paleo- climatic archives for the Peruvian Coast. Palaeogeography, Palaeoclimatology, Palaeoclimatology, 194, 23–40.CrossRefGoogle Scholar
  61. Spada, G., & Stocchi, P. (2007). SELEN: a fortran 90 program for solving the ‘Sea-Level Equation’, Computers and Geosciences, 33(4), 538–562.CrossRefGoogle Scholar
  62. Stewart, D. J. (1999). The formation processes affecting submerged archaeological sites: An overview. Geoarchaeology: An International Journal, 14(6), 565–587.CrossRefGoogle Scholar
  63. Stright, M. J. (1990). Archaeological sites on the North American continental shelf. Geological Society of America, Centennial Special Volume 4, 439–465.Google Scholar
  64. Stright, M. J. (1995). Archaic period sites on the continental shelf of north America: The effect of relative sea-level changes on archaeological site locations and preservation. In E. A. Bettis (Ed.), Archaeological Geology of the Archaic Period in North America (pp. 131–147). Geological society of America special paper 297.Google Scholar
  65. Valero Garcés, B., Jenny, B., Rondanelli, M., Delgado-Huertas, A., Burns, S., Veit, H., & Moreno, A. (2005). Palaeohydrology of Laguna Tagua Tagua (34°31 S) and moisture fluctuations in central Chile for last 46,000 yr. Journal of Quaternary Science, 20(7–8), 625–641.CrossRefGoogle Scholar
  66. Vargas, G., & Ortega, C. (2008). Contexto Geomorfológico y Análisis Sedimentológico Preliminar de Muestras de la Bahía Quintero, V Región. Proyecto Terminal GNL Quintero, in ARKA Consultores 2008, Evaluación Arqueológica Subacuática Sitio GNL Quintero 1. September 2008.Google Scholar
  67. Villagrán, C., & Varela, J. (1990). Palynological evidence for increased aridity on the central Chile coast during the Holocene. Quaternary Research, 34, 198–207.CrossRefGoogle Scholar
  68. Villa-Martínez, R., & Villagrán, C. (1997). Historia de la Vegetación de Bosques Pantanosos de la Costa de Chile Central Durante el Holoceno Medio y Tardío, Revista Chilena de Historia Natural, 70, 391–401.Google Scholar
  69. Waters, M. (1992). Principles of Geoarchaeology: A north American perspective. Tucson: University of Arizona Press.Google Scholar
  70. Waters, M. R. & Stafford, T. W. (2007). Redefining the Age of Clovis: Implications for the Peopling of the Americas, Science 23 Vol. 315 (5815), 1122–1126.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • aDiego Carbias
    • 1
  • Isabel Cartajena
    • 2
  • Renato Simonetti
    • 1
  • Patricio López
    • 3
  • Carla Morales
    • 1
  • Cristina Ortega
    • 4
  1. 1.ÀRKA—Maritime ArchaeologyValparaísoChile
  2. 2.Departamento de AntropologíaUniversidad de ChileSantiago de ChileChile
  3. 3.Universidad Católica del Norte, IIAMSan Pedro de AtacamaChile
  4. 4.Facultad de Ciencias Físicas y Matemáticas, Departamento de GeologíaUniversidad de ChileSantiagoChilew

Personalised recommendations