Advertisement

Environmental Interactions of Geo- and Bio-Macromolecules with Nanomaterials

  • Navid B. SalehEmail author
  • Jamie R. Lead
  • Nirupam Aich
  • Dipesh Das
  • Iftheker A. Khan
Chapter

Abstract

Engineered nanomaterials (ENMs) are mostly synthesized with modified surfaces using various surfactants, polymeric, or biomolecule coatings to achieve desired functionality. When exposed to the environment, coatings on the ENMs will undergo the first set of interactions with natural geo- and bio-macromolecules pre-existing in aqueous and/or soil matrices. Such interfacial interaction will likely alter the conformation and extent of coverage of the synthetic ENM surface coatings via exchange, displacement, and/or overcoating by environmental macromolecules. The exchange kinetics and extent of replacement of the synthetic coatings will profoundly impact environmental fate, transport, transformation, and toxicity of the ENMs. This chapter discusses the state-of-the-art literature to identify key synthetic coating types, their interaction with the environmental and biological macromolecules, and illustrate the existing challenges to determine coating exchange kinetics and its environmental implications on ENMs.

Keywords

Humic Acid Surface Coating Fulvic Acid Ligand Exchange Soft Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Afrooz A, Khan IA, Hussain SM, Saleh NB (2013) Mechanistic heteroaggregation of gold nanoparticles in a wide range of solution chemistry. Environ Sci Technol 47(4):1853–1860Google Scholar
  2. Aich N, Boateng L, Flora JRV, Saleh N (2013) Preparation of non-aggregating aqueous fullerenes in highly saline solutions with a biocompatible non-ionic polymer. Nanotechnology (in review)Google Scholar
  3. Aitken RJ, Chaudhry MQ, Boxall ABA, Hull M (2006) Manufacture and use of nanomaterials: current status in the UK and global trends. Occup Med Oxf 56(5):300–306Google Scholar
  4. Alexandridis P, Athanassiou V, Fukuda S, Hatton TA (1994) Surface-activity of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) copolymers. Langmuir 10(8):2604–2612Google Scholar
  5. Aliaga C, Park JY, Yamada Y, Lee HS, Tsung C-K, Yang P, Somorjai GA (2009) Sum frequency generation and catalytic reaction studies of the removal of organic capping agents from pt nanoparticles by uv–ozone treatment. J Phys Chem C 113(15):6150–6155Google Scholar
  6. Allen BL, Kichambare PD, Star A (2007) Carbon nanotube field-effect-transistor-based biosensors. Adv Mater 19(11):1439–1451Google Scholar
  7. Arico AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4(5):366–377Google Scholar
  8. Arvizo RR, Miranda OR, Thompson MA, Pabelick CM, Bhattacharya R, Robertson JD, Rotello VM, Prakash YS, Mukherjee P (2010) Effect of nanoparticle surface charge at the plasma membrane and beyond. Nano Lett 10(7):2543–2548Google Scholar
  9. Avouris P, Freitag M, Perebeinos V (2008) Carbon-nanotube photonics and optoelectronics. Nat Photonics 2(6):341–350Google Scholar
  10. Baalousha M, Lead JR (2007a) Characterization of natural aquatic colloids (<5 nm) by flow-field flow fractionation and atomic force microscopy. Environ Sci Technol 41(4):1111–1117Google Scholar
  11. Baalousha M, Lead JR (2007b) Size fractionation and characterization of natural aquatic colloids and nanoparticles. Sci Total Environ 386(1–3):93–102Google Scholar
  12. Baalousha M, Nur Y, Romer I, Tejamaya M, Lead JR (2013) Effect of monovalent and divalent cations, anions and fulvic acid on aggregation of citrate-coated silver nanoparticles. Sci Total Environ 454:119–131Google Scholar
  13. Bae DS, Park K, Kim JW, Kim RH (2006) In fabrication and microstructure of ZnO–SiO2 nanoparticles by a reverse micelle and sol-gel processing, materials science forum. Trans Tech Publ 2006:790–793Google Scholar
  14. Baron R, Willner B, Willner I (2007) Biomolecule-nanoparticle hybrids as functional units for nanobiotechnology. Chem Commun 4:323–332Google Scholar
  15. Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes—the route toward applications. Science 297(5582):787–792Google Scholar
  16. Behrens S, Bönnemann H, Matoussevitch N, Gorschinski A, Dinjus E, Habicht W, Bolle J, Zinoveva S, Palina N, Hormes J (2006) Surface engineering of Co and FeCo nanoparticles for biomedical application. J Phys Condens Matter 18(38):S2543Google Scholar
  17. Bello D, Hart AJ, Ahn K, Hallock M, Yamamoto N, Garcia EJ, Ellenbecker MJ, Wardle BL (2008) Particle exposure levels during CVD growth and subsequent handling of vertically-aligned carbon nanotube films. Carbon 46(6):974–977Google Scholar
  18. Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42(11):4133–4139Google Scholar
  19. Benn T, Cavanagh B, Hristovski K, Posner JD, Westerhoff P (2010) The release of nanosilver from consumer products used in the home supplemental data file available online for this article. all rights reserved. no part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. J Environ Qual 39(6):1875–1882Google Scholar
  20. Bertrand F, German S-A, Anwar A, Irune V, Gemma B, Yolanda RDM, Lennart B (2013) Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens. Sci Technol Adv Mater 14(2):023001Google Scholar
  21. Besteman K, Lee JO, Wiertz FGM, Heering HA, Dekker C (2003) Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett 3(6):727–730Google Scholar
  22. Bhan C, Brower TL, Raghavan D (2013) SPR studies of the adsorption of silver/bovine serum albumin nanoparticles (Ag/BSA NPs) onto the model biological substrates. J Colloid Interface Sci 402:40–49Google Scholar
  23. Bhattacharyya S, Sinturel C, Salvetat JP, Saboungi ML (2005) Protein-functionalized carbon nanotube-polymer composites. Appl Phys Lett 86(11)Google Scholar
  24. Bianco A, Kostarelos K, Partidos CD, Prato M (2005a) Biomedical applications of functionalised carbon nanotubes. Chem Commun 5:571–577Google Scholar
  25. Bianco A, Kostarelos K, Prato M (2005b) Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9(6):674–679Google Scholar
  26. Biesalski M, Johannsmann D, Ruhe J (2004) Electrolyte-induced collapse of a polyelectrolyte brush. J Chem Phys 120(18):8807–8814Google Scholar
  27. Blaser SA, Scheringer M, MacLeod M, Hungerbühler K (2008) Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ 390(2–3):396–409Google Scholar
  28. Boudou T, Crouzier T, Ren KF, Blin G, Picart C (2010) Multiple functionalities of polyelectrolyte multilayer films: new biomedical applications. Adv Mater 22(4):441–467Google Scholar
  29. Breunig M, Bauer S, Goepferich A (2008) Polymers and nanoparticles: intelligent tools for intracellular targeting? Eur J Pharm Biopharm 68(1):112–128Google Scholar
  30. Brewer SH, Glomm WR, Johnson MC, Knag MK, Franzen S (2005) Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langmuir 21(20):9303–9307Google Scholar
  31. Buffle J, Wilkinson KJ, Stoll S, Filella M, Zhang JW (1998) A generalized description of aquatic colloidal interactions: the three-colloidal component approach. Environ Sci Technol 32(19):2887–2899Google Scholar
  32. Bulte JWM, Kraitchman DL (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17(7):484–499Google Scholar
  33. Burghard M, Klauk H, Kern K (2009) Carbon-based field-effect transistors for nanoelectronics. Adv Mater 21(25–26):2586–2600Google Scholar
  34. Burt JL, Gutierrez-Wing C, Miki-Yoshida M, Jose-Yacaman M (2004) Noble-metal nanoparticles directly conjugated to globular proteins. Langmuir 20(26):11778–11783Google Scholar
  35. Carignano MA, Szleifer I (2000) Prevention of protein adsorption by flexible and rigid chain molecules. Colloids Surf B 18(3–4):169–182Google Scholar
  36. Cathcart H, Quinn S, Nicolosi V, Kelly JM, Blau WJ, Coleman JN (2007) Spontaneous debundling of single-walled carbon nanotubes in DNA-based dispersions. J Phys Chem C 111(1):66–74Google Scholar
  37. Cattoz B, Cosgrove T, Crossman M, Prescott SW (2011) Surfactant-mediated desorption of polymer from the nanoparticle interface. Langmuir 28(5):2485–2492Google Scholar
  38. Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci 104(7):2050–2055Google Scholar
  39. Chaudhuri RG, Paria S (2011) Growth kinetics of sulfur nanoparticles in aqueous surfactant solutions. J Colloid Interface Sci 354(2):563–569Google Scholar
  40. Chen C-Y, Jafvert CT (2011) The role of surface functionalization in the solar light-induced production of reactive oxygen species by single-walled carbon nanotubes in water. Carbon 49(15):5099–5106Google Scholar
  41. Chen J, Xiu Z, Lowry GV, Alvarez PJJ (2011) Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron. Water Res 45(5):1995–2001Google Scholar
  42. Chin Y-P, Aiken G, O’Loughlin E (1994) Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environ Sci Technol 28(11):1853–1858Google Scholar
  43. Cho K, Wang X, Nie S, Chen Z, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14(5):1310–1316Google Scholar
  44. Cho EC, Xie J, Wurm PA, Xia Y (2009) Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I-2/KI etchant. Nano Lett 9(3):1080–1084Google Scholar
  45. Consiglio R, Randall NX, Bellaton B, von Stebut J (1998) The nano-scratch tester (NST) as a new tool for assessing the strength of ultrathin hard coatings and the mar resistance of polymer films. Thin Solid Films 332(1–2):151–156Google Scholar
  46. Conte P, Agretto A, Spaccini R, Piccolo A (2005) Soil remediation: humic acids as natural surfactants in the washings of highly contaminated soils. Environ Pollut 135(3):515–522Google Scholar
  47. Corbierre MK, Cameron NS, Lennox RB (2004) Polymer-stabilized gold nanoparticles with high grafting densities. Langmuir 20(7):2867–2873Google Scholar
  48. Corsaro A, Anselmi C, Polano M, Aceto A, Florio T, De Nobili M (2010) The interaction of humic substances with the human prion protein fragment 90-231 affects its protease K resistance and cell internalization. J Biol Regul Homeost Agents 24(1):27–39Google Scholar
  49. Crespilho FN, Zucolotto V, Siqueira JR, Constantino CJL, Nart FC, Oliveira ON (2005) Immobilization of humic acid in nanostructured layer-by-layer films for sensing applications. Environ Sci Technol 39(14):5385–5389Google Scholar
  50. Cumberland SA, Lead JR (2009) Particle size distributions of silver nanoparticles at environmentally relevant conditions. J Chromatogr A 1216(52):9099–9105Google Scholar
  51. Da Silva S, Melo T, Soler M, Lima E, Da Silva M, Morais P (2003) Stability of citrate-coated magnetite and cobalt-ferrite nanoparticles under laser irradiation: a Raman spectroscopy investigation. IEEE Trans Magn 39(5):2645–2647Google Scholar
  52. Di Crescenzo A, Aschi M, Del Canto E, Giordani S, Demurtas D, Fontana A (2011) Structural modifications of ionic liquid surfactants for improving the water dispersibility of carbon nanotubes: an experimental and theoretical study. PhysChemChemPhys 13(23):11373–11383Google Scholar
  53. Diegoli S, Manciulea AL, Begum S, Jones IP, Lead JR, Preece JA (2008) Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules. Sci Total Environ 402(1):51–61Google Scholar
  54. Eda G, Chhowalla M (2010) Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv Mater 22(22):2392–2415Google Scholar
  55. Fabrega J, Fawcett SR, Renshaw JC, Lead JR (2009) Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter. Environ Sci Technol 43(19):7285–7290Google Scholar
  56. Farkas J, Peter H, Christian P, Gallego Urrea JA, Hassellöv M, Tuoriniemi J, Gustafsson S, Olsson E, Hylland K, Thomas KV (2011) Characterization of the effluent from a nanosilver producing washing machine. Environ Int 37(6):1057–1062Google Scholar
  57. Froner E, D’Amato E, Adamo R, Prtljaga N, Larcheri S, Pavesi L, Rigo A, Potrich C, Scarpa M (2011) Deoxycholate as an efficient coating agent for hydrophilic silicon nanocrystals. J Colloid Interface Sci 358(1):86–92Google Scholar
  58. Geranio L, Heuberger M, Nowack B (2009) The behavior of silver nanotextiles during washing. Environ Sci Technol 43(21):8113–8118Google Scholar
  59. Ghabbour EA, Davies G (2001) Humic substances: structures, models and functions. Royal Society of Chemistry, CambridgeGoogle Scholar
  60. Gole A, Murphy CJ (2005) Polyelectrolyte-coated gold nanorods: synthesis, characterization and immobilization. Chem Mater 17(6):1325–1330Google Scholar
  61. Gondikas AP, Morris A, Reinsch BC, Marinakos SM, Lowry GV, Hsu-Kim H (2012) Cysteine-induced modifications of zero-valent silver nanomaterials: implications for particle surface chemistry, aggregation, dissolution, and silver speciation. Environ Sci Technol 46(13):7037–7045Google Scholar
  62. Gottschalk F, Nowack B (2011) The release of engineered nanomaterials to the environment. J Environ Monit 13(5):1145–1155Google Scholar
  63. Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43(24):9216–9222Google Scholar
  64. Gratzel M (2001) Photoelectrochemical cells. Nature 414(6861):338–344Google Scholar
  65. Gratzel M (2003) Dye-sensitized solar cells. J Photochem Photobiol C-Photochem Rev 4(2):145–153Google Scholar
  66. Grubbs RB (2007) Roles of polymer ligands in nanoparticle stabilization. Polym Rev 47(2):197–215Google Scholar
  67. Guo J, Gao X, Su L, Xia H, Gu G, Pang Z, Jiang X, Yao L, Chen J, Chen H (2011) Aptamer-functionalized PEG–PLGA nanoparticles for enhanced anti-glioma drug delivery. Biomaterials 32(31):8010–8020Google Scholar
  68. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021Google Scholar
  69. Gupta AK, Naregalkar RR, Vaidya VD, Gupta M (2007) Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine 2(1):23–39Google Scholar
  70. Hendren CO, Badireddy AR, Casman E, Wiesner MR (2013) Modeling nanomaterial fate in wastewater treatment: Monte Carlo simulation of silver nanoparticles (nano-Ag). Sci Total Environ 449:418–425Google Scholar
  71. Hernandez RM, Richter L, Semancik S, Stranick S, Mallouk TE (2004) Template fabrication of protein-functionalized gold-polypyrrole-gold segmented nanowires. Chem Mater 16(18):3431–3438Google Scholar
  72. Herrwerth S, Eck W, Reinhardt S, Grunze M (2003) Factors that determine the protein resistance of oligoether self-assembled monolayers—internal hydrophilicity, terminal hydrophilicity, and lateral packing density. J Am Chem Soc 125(31):9359–9366Google Scholar
  73. Hota G, Jain S, Khilar KC (2004) Synthesis of CdS–Ag< sub> 2</sub> S core-shell/composite nanoparticles using AOT/< i> n</i>-heptane/water microemulsions. Colloids Surf A 232(2):119–127Google Scholar
  74. Hsu L-Y, Chein H-M (2007) Evaluation of nanoparticle emission for TiO2 nanopowder coating materials. In: Maynard A, Pui DH (eds) Nanotechnology and occupational health. Springer, Netherlands, pp 157–163Google Scholar
  75. Huang X, Neretina S, El-Sayed MA (2009) Gold nanorods—from synthesis and properties to biological and biomedical applications. Adv Mater 21(48):4880–4910Google Scholar
  76. Huang R, Carney RP, Stellacci F, Lau BLT (2013) Protein-nanoparticle interactions: the effects of surface compositional and structural heterogeneity are scale dependent. Nanoscale 5(15):6928–6935Google Scholar
  77. Hwang YS, Li Q (2010) Characterizing photochemical transformation of aqueous NC(60) under environmentally relevant conditions. Environ Sci Technol 44(8):3008–3013Google Scholar
  78. Islam MF, Rojas E, Bergey DM, Johnson AT, Yodh AG (2003) High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett 3(2):269–273Google Scholar
  79. Jaffar S, Nam KT, Khademhosseini A, Xing J, Langer RS, Belcher AM (2004) Layer-by-layer surface modification and patterned electrostatic deposition of quantum dots. Nano Lett 4(8):1421–1425Google Scholar
  80. Jedlovszky-Hajdú A, Bombelli FB, Monopoli MP, Tombácz E, Dawson KA (2012) Surface coatings shape the protein corona of spions with relevance to their application in vivo. Langmuir 28(42):14983–14991Google Scholar
  81. Joo SH, Al-Abed SR, Luxton T (2009) Influence of carboxymethyl cellulose for the transport of titanium dioxide nanoparticles in clean silica and mineral-coated sands. Environ Sci Technol 43(13):4954–4959Google Scholar
  82. Ju L, Zhang W, Wang X, Hu J, Zhang Y (2012) Aggregation kinetics of SDBS-dispersed carbon nanotubes in different aqueous suspensions. Colloids Surf A 409:159–166Google Scholar
  83. Kaegi R, Ulrich A, Sinnet B, Vonbank R, Wichser A, Zuleeg S, Simmler H, Brunner S, Vonmont H, Burkhardt M, Boller M (2008) Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ Pollut 156(2):233–239Google Scholar
  84. Kaegi R, Sinnet B, Zuleeg S, Hagendorfer H, Mueller E, Vonbank R, Boller M, Burkhardt M (2010) Release of silver nanoparticles from outdoor facades. Environ Pollut 158(9):2900–2905Google Scholar
  85. Kaegi R, Voegelin A, Sinnet B, Zuleeg S, Hagendorfer H, Burkhardt M, Siegrist H (2011) Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant. Environ Sci Technol 45(9):3902–3908Google Scholar
  86. Karajanagi SS, Yang HC, Asuri P, Sellitto E, Dordick JS, Kane RS (2006) Protein-assisted solubilization of single-walled carbon nanotubes. Langmuir 22(4):1392–1395Google Scholar
  87. Khan IA, Afrooz A, Flora JRV, Schierz PA, Ferguson PL, Sabo-Attwood T, Saleh NB (2013a) Chirality affects aggregation kinetics of single-walled carbon nanotubes. Environ Sci Technol 47(4):1844–1852Google Scholar
  88. Khan IA, Berge ND, Sabo-Attwood T, Ferguson PL, Saleh NB (2013) Single-walled carbon nanotube transport in representative municipal solid waste landfill conditions. Environ Sci TechnolGoogle Scholar
  89. Khlebtsov NG, Dykman LA, Bogatyrev VA, Khlebtsov BN (2003) Two-layer model of colloidal gold bioconjugates and its application to the optimization of nanosensors. Colloid J 65(4):508–517Google Scholar
  90. Kim DK, Mikhaylova M, Zhang Y, Muhammed M (2003) Protective coating of superparamagnetic iron oxide nanoparticles. Chem Mater 15(8):1617–1627Google Scholar
  91. Kim D, Park S, Lee JH, Jeong YY, Jon S (2007) Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J Am Chem Soc 129(24):7661–7665Google Scholar
  92. Kim JP, Lee BY, Hong S, Sim SJ (2008) Ultrasensitive carbon nanotube-based biosensors using antibody-binding fragments. Anal Biochem 381(2):193–198Google Scholar
  93. Kim ST, Saha K, Kim C, Rotello VM (2013) The role of surface functionality in determining nanoparticle cytotoxicity. Acc Chem Res 46(3):681–691Google Scholar
  94. Kiser MA, Westerhoff P, Benn T, Wang Y, Pérez-Rivera J, Hristovski K (2009) Titanium nanomaterial removal and release from wastewater treatment plants. Environ Sci Technol 43(17):6757–6763Google Scholar
  95. Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27(9):1825–1851Google Scholar
  96. Köhler AR, Som C, Helland A, Gottschalk F (2008) Studying the potential release of carbon nanotubes throughout the application life cycle. J Clean Prod 16(8–9):927–937Google Scholar
  97. Kohli P, Harrell CC, Cao ZH, Gasparac R, Tan WH, Martin CR (2004) DNA-functionalized nanotube membranes with single-base mismatch selectivity. Science 305(5686):984–986Google Scholar
  98. Kokura S, Handa O, Takagi T, Ishikawa T, Naito Y, Yoshikawa T (2010) Silver nanoparticles as a safe preservative for use in cosmetics. Nanomed Nanotechnol Biol Med 6(4):570–574Google Scholar
  99. Kong LJ, Tedrow O, Chan YF, Zepp RG (2009) Light-initiated transformations of fullerenol in aqueous media. Environ Sci Technol 43(24):9155–9160Google Scholar
  100. Krass H, Papastavrou G, Kurth DG (2002) Layer-by-layer self-assembly of a polyelectrolyte bearing metal ion coordination and electrostatic functionality. Chem Mater 15(1):196–203Google Scholar
  101. Kumar S, Aswal VK, Kohlbrecher J (2012) Size-dependent interaction of silica nanoparticles with different surfactants in aqueous solution. Langmuir 28(25):9288–9297Google Scholar
  102. Kurppa K, Jiang H, Szilvay GR, Nasibulin AG, Kauppinen EL, Linder MB (2007) Controlled hybrid nanostructures through protein-mediated noncovalent functionalization of carbon nanotube. Angew Chem Int Ed 46(34):6446–6449Google Scholar
  103. Lead JR, Wilkinson KJ (2006) Aquatic colloids and nanoparticles: current knowledge and future trends. Environ Chem 3(3):159–171Google Scholar
  104. Lee SB, Mitchell DT, Trofin L, Nevanen TK, Soderlund H, Martin CR (2002) Antibody-based bio-nanotube membranes for enantiomeric drug separations. Science 296(5576):2198–2200Google Scholar
  105. Lee J-S, Han MS, Mirkin CA (2007) Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew Chem Int Ed 46(22):4093–4096Google Scholar
  106. Leenheer JA, Wershaw RL, Reddy MM (1995) Strong-acid, carboxyl-group structures in fulvic acid from the Suwannee River, Georgia. 2. Major structures. Environ Sci Technol 29(2):399–405Google Scholar
  107. Levard C, Reinsch BC, Michel FM, Oumahi C, Lowry GV, Brown GE Jr (2011) Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution: impact on dissolution rate. Environ Sci Technol 45(12):5260–5266Google Scholar
  108. Levy DE, Horner AA, Solomon A (1981) Immunoglobulin-sulfated polysaccharide interactions. Binding of agaropectin and heparin by human IgG proteins. J Exp Med 153(4):883–896Google Scholar
  109. Li ZF, Ruckenstein E (2004) Water-soluble poly(acrylic acid) grafted luminescent silicon nanoparticles and their use as fluorescent biological staining labels. Nano Lett 4(8):1463–1467Google Scholar
  110. Li D, He Q, Cui Y, Li J (2007) Fabrication of pH-responsive nanocomposites of gold nanoparticles/poly (4-vinylpyridine). Chem Mater 19(3):412–417Google Scholar
  111. Li D, Lyon DY, Li Q, Alvarez PJJ (2008) Effect of soil sorption and aquatic natural organic matter on the antibacterial activity of a fullerene water suspension. Environ Toxicol Chem 27(9):1888–1894Google Scholar
  112. Li Z, Greden K, Alvarez PJJ, Gregory KB, Lowry GV (2010) Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zerovalent iron to E. coli. Environ Sci Technol 44(9):3462–3467Google Scholar
  113. Li CX, Bolisetty S, Chaitanya K, Adamcik J, Mezzenga R (2013) Tunable carbon nanotube/protein core-shell nanoparticles with NIR- and enzymatic-responsive cytotoxicity. Adv Mater 25(7):1010–1015Google Scholar
  114. Liu T, Guo L, Tao Y, Wang Y, Wang W (1999) Synthesis and interfacial structure of nanoparticles γ-Fe< sub> 2</sub> O< sub> 3</sub> coated with surfactant DBS and CTAB. Nanostruct Mater 11(4):487–492Google Scholar
  115. Lodish H (2008) Molecular cell biology. Macmillan, LondonGoogle Scholar
  116. Lok C-N, Ho C-M, Chen R, He Q-Y, Yu W-Y, Sun H, Tam P-H, Chiu J-F, Che C-M (2007) Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem 12(4):527–534Google Scholar
  117. Louie SM, Phenrat T, Small MJ, Tilton RD, Lowry GV (2012) Parameter identifiability in application of soft particle electrokinetic theory to determine polymer and polyelectrolyte coating thicknesses on colloids. Langmuir 28(28):10334–10347Google Scholar
  118. Lourenco C, Teixeira M, Simões S, Gaspar R (1996) Steric stabilization of nanoparticles: size and surface properties. Int J Pharm 138(1):1–12Google Scholar
  119. Lowry GV, Gregory KB, Apte SC, Lead JR (2012a) Transformations of nanomaterials in the environment. Environ Sci Technol 46(13):6893–6899Google Scholar
  120. Lowry GV, Espinasse BP, Badireddy AR, Richardson CJ, Reinsch BC, Bryant LD, Bone AJ, Deonarine A, Chae S, Therezien M, Colman BP, Hsu-Kim H, Bernhardt ES, Matson CW, Wiesner MR (2012b) Long-term transformation and fate of manufactured Ag nanoparticles in a simulated large scale freshwater emergent wetland. Environ Sci Technol 46(13):7027–7036Google Scholar
  121. Lu W, Senapati D, Wang S, Tovmachenko O, Singh AK, Yu H, Ray PC (2010) Effect of surface coating on the toxicity of silver nanomaterials on human skin keratinocytes. Chem Phys Lett 487(1–3):92–96Google Scholar
  122. Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci 105(38):14265–14270Google Scholar
  123. Lynch I, Dawson KA (2008) Protein-nanoparticle interactions. Nano Today 3(1–2):40–47Google Scholar
  124. Ma H, Yin B, Wang S, Jiao Y, Pan W, Huang S, Chen S, Meng F (2004) Synthesis of silver and gold nanoparticles by a novel electrochemical method. ChemPhysChem 5(1):68–75Google Scholar
  125. Ma R, Levard C, Michel FM, Brown GE Jr, Lowry GV (2013) Sulfidation mechanism for zinc oxide nanoparticles and the effect of sulfidation on their solubility. Environ Sci Technol 47(6):2527–2534Google Scholar
  126. Mafune F, Kohno J-Y, Takeda Y, Kondow T, Sawabe H (2000) Formation and size control of silver nanoparticles by laser ablation in aqueous solution. J Phys Chem B 104(39):9111–9117Google Scholar
  127. Mafuné F, Kohno J-Y, Takeda Y, Kondow T, Sawabe H (2001) Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant. J Phys Chem B 105(22):5114–5120Google Scholar
  128. Manzoori JL, Amjadi M, Hallaj T (2009) Preconcentration of trace cadmium and manganese using 1-(2-pyridylazo)-2-naphthol-modified TiO2 nanoparticles and their determination by flame atomic absorption spectrometry. Int J Environ Anal Chem 89(8–12):749–758Google Scholar
  129. Martin JJ, Cardamone JM, Irwin PL, Brown EM (2011) Keratin capped silver nanoparticles–synthesis and characterization of a nanomaterial with desirable handling properties. Colloids Surf B 88(1):354–361Google Scholar
  130. Matarredona O, Rhoads H, Li ZR, Harwell JH, Balzano L, Resasco DE (2003) Dispersion of single-walled carbon nanotubes in aqueous solutions of the anionic surfactant NaDDBS. J Phys Chem B 107(48):13357–13367Google Scholar
  131. Mauter MS, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42(16):5843–5859Google Scholar
  132. McDevitt MR, Chattopadhyay D, Kappel BJ, Jaggi JS, Schiffman SR, Antczak C, Njardarson JT, Brentjens R, Scheinberg DA (2007) Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes. J Nucl Med 48(7):1180–1189Google Scholar
  133. Mehta S, Kumar S, Chaudhary S, Bhasin K (2009) Effect of cationic surfactant head groups on synthesis, growth and agglomeration behavior of ZnS nanoparticles. Nanoscale Res Lett 4(10):1197–1208Google Scholar
  134. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709):538–544Google Scholar
  135. Milani S, Bombelli FB, Pitek AS, Dawson KA, Radler J (2012) Reversible versus irreversible binding of transferrin to polystyrene nanoparticles: soft and hard corona. ACS Nano 6(3):2532–2541Google Scholar
  136. Moliner-Martínez Y, Cárdenas S, Simonet BM, Valcárcel M (2009) Recent developments in capillary EKC based on carbon nanoparticles. Electrophoresis 30(1):169–175Google Scholar
  137. Mudunkotuwa IA, Grassian VH (2010) Citric acid adsorption on TiO2 nanoparticles in aqueous suspensions at acidic and circumneutral pH: surface coverage, surface speciation, and its impact on nanoparticle—nanoparticle interactions. J Am Chem Soc 132(42):14986–14994Google Scholar
  138. Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42(12):4447–4453Google Scholar
  139. Murphy CJ, Gole AM, Hunyadi SE, Stone JW, Sisco PN, Alkilany A, Kinard BE, Hankins P (2008) Chemical sensing and imaging with metallic nanorods. Chem Commun 5:544–557Google Scholar
  140. Natte K, Friedrich JF, Wohlrab S, Lutzki J, von Klitzing R, Österle W, Orts-Gil G (2013) Impact of polymer shell on the formation and time evolution of nanoparticle–protein corona. Colloids Surf B 104:213–220Google Scholar
  141. Nowack B, Ranville JF, Diamond S, Gallego-Urrea JA, Metcalfe C, Rose J, Horne N, Koelmans AA, Klaine SJ (2012) Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ Toxicol Chem 31(1):50–59Google Scholar
  142. Nozik AJ (2002) Quantum dot solar cells. Physica E 14(1–2):115–120Google Scholar
  143. Obata S, Honda K (2011) Dynamic behavior of carbon nanotube and bio-/artificial surfactants complexes in an aqueous environment. J Phys Chem C 115(40):19659–19667Google Scholar
  144. O’Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH, Rialon KL, Boul PJ, Noon WH, Kittrell C, Ma JP, Hauge RH, Weisman RB, Smalley RE (2002) Band gap fluorescence from individual single-walled carbon nanotubes. Science 297(5581):593–596Google Scholar
  145. Pallem VL, Stretz HA, Wells MJM (2009) Evaluating aggregation of gold nanoparticles and humic substances using fluorescence spectroscopy. Environ Sci Technol 43(19):7531–7535Google Scholar
  146. Pei XW, Hao JC, Liu WM (2007) Preparation and characterization of carbon nanotubes-polymer/Ag hybrid nanocomposites via surface RAFT polymerization. J Phys Chem C 111(7):2947–2952Google Scholar
  147. Phenrat T, Saleh N, Sirk K, Kim H-J, Tilton R, Lowry G (2008) Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. J Nanopart Res 10(5):795–814Google Scholar
  148. Phenrat T, Liu Y, Tilton RD, Lowry GV (2009a) Adsorbed polyelectrolyte coatings decrease Fe 0 nanoparticle reactivity with TCE in water: conceptual model and mechanisms. Environ Sci Technol 43(5):1507–1514Google Scholar
  149. Phenrat T, Long TC, Lowry GV, Veronesi B (2009b) Partial oxidation (“Aging”) and surface modification decrease the toxicity of nanosized zerovalent iron. Environ Sci Technol 43(1):195–200Google Scholar
  150. Pinna M, Hiltl S, Guo XH, Boker A, Zvelindovsky AV (2010) Block copolymer nanocontainers. ACS Nano 4(5):2845–2855Google Scholar
  151. Podila R, Chen R, Ke PC, Brown JM, Rao AM (2012) Effects of surface functional groups on the formation of nanoparticle-protein corona. Appl Phys Lett 101(26):263701–263704Google Scholar
  152. Prato M, Kostarelos K, Bianco A (2008) Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res 41(1):60–68Google Scholar
  153. Prime KL, Whitesides GM (1993) Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide): a model system using self-assembled monolayers. J Am Chem Soc 115(23):10714–10721Google Scholar
  154. Pumera M, Ambrosi A, Bonanni A, Chng ELK, Poh HL (2010) Graphene for electrochemical sensing and biosensing. TrAC Trends Anal Chem 29(9):954–965Google Scholar
  155. Qiu Y, Liu Y, Wang L, Xu L, Bai R, Ji Y, Wu X, Zhao Y, Li Y, Chen C (2010) Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials 31(30):7606–7619Google Scholar
  156. Rotureau E, Raynaud J, Choquenet B, Marie E, Nouvel C, Six JL, Dellacherie E, Durand A (2008) Application of amphiphilic polysaccharides as stabilizers in direct and inverse free-radical miniemulsion polymerization. Colloid Surf A 331(1–2):84–90Google Scholar
  157. Safi M, Courtois J, Seigneuret M, Conjeaud H, Berret JF (2011) The effects of aggregation and protein corona on the cellular internalization of iron oxide nanoparticles. Biomaterials 32(35):9353–9363Google Scholar
  158. Saleh N, Phenrat T, Sirk K, Dufour B, Ok J, Sarbu T, Matyiaszewski K, Tilton RD, Lowry GV (2005) Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface. Nano Lett 5(12):2489–2494Google Scholar
  159. Saleh NB, Pfefferle LD, Elimelech M (2010) Influence of bio-macromolecules and humic acid on the aggregation kinetics of single-walled carbon nanotubes. Environ Sci Technol 44(7):2412–2418Google Scholar
  160. Salkar R, Jeevanandam P, Kataby G, Aruna S, Koltypin Y, Palchik O, Gedanken A (2000) Elongated copper nanoparticles coated with a zwitterionic surfactant. J Phys Chem B 104(5):893–897Google Scholar
  161. Santra S, Tapec R, Theodoropoulou N, Dobson J, Hebard A, Tan WH (2001) Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants. Langmuir 17(10):2900–2906Google Scholar
  162. Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL (2013) Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev 113(3):1904–2074Google Scholar
  163. Satulovsky J, Carignano MA, Szleifer I (2000) Kinetic and thermodynamic control of protein adsorption. Proc Natl Acad Sci USA 97(16):9037–9041Google Scholar
  164. Sau TK, Murphy CJ (2005) Self-assembly patterns formed upon solvent evaporation of aqueous cetyltrimethylammonium bromide-coated gold nanoparticles of various shapes. Langmuir 21(7):2923–2929Google Scholar
  165. Schwierz F (2010) Graphene transistors. Nat Nanotechnol 5(7):487–496Google Scholar
  166. Shenoy DB, Amiji MA (2005) Poly(ethylene oxide)-modified poly(epsilon-caprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer. Int J Pharm 293(1–2):261–270Google Scholar
  167. Shoults-Wilson WA, Reinsch BC, Tsyusko OV, Bertsch PM, Lowry GV, Unrine JM (2011) Effect of silver nanoparticle surface coating on bioaccumulation and reproductive toxicity in earthworms (Eisenia fetida). Nanotoxicology 5(3):432–444Google Scholar
  168. Sinani VA, Koktysh DS, Yun B-G, Matts RL, Pappas TC, Motamedi M, Thomas SN, Kotov NA (2003) Collagen coating promotes biocompatibility of semiconductor nanoparticles in stratified LBL films. Nano Lett 3(9):1177–1182Google Scholar
  169. Smith B, Wepasnick K, Schrote KE, Cho H-H, Ball WP, Fairbrother DH (2009) Influence of surface oxides on the colloidal stability of multi-walled carbon nanotubes: a structure-property relationship. Langmuir 25(17):9767–9776Google Scholar
  170. So HM, Won K, Kim YH, Kim BK, Ryu BH, Na PS, Kim H, Lee JO (2005) Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements. J Am Chem Soc 127(34):11906–11907Google Scholar
  171. Solís D, Vigueras-Santiago E, Hernández-López S, Gómez-Cortés A, Aguilar-Franco M, Camacho-López MA (2008) Textural, structural and electrical properties of TiO2 nanoparticles using Brij 35 and P123 as surfactants. Sci Technol Adv Mater 9(2):025003Google Scholar
  172. Sperling R, Parak W (1915) Surface modification, functionalization and bio-conjugation of colloidal inorganic nanoparticles. Philos Trans R Soc A 2010(368):1333–1383Google Scholar
  173. Stevenson FJ (1994) Humus chemistry: genesis, composition, reactions. John Wiley and Sons, HobokenGoogle Scholar
  174. Suresh AK, Pelletier DA, Doktycz MJ (2013) Relating nanomaterial properties and microbial toxicity. Nanoscale 5(2):463–474Google Scholar
  175. Szleifer I, Carignano MA (2000) Tethered polymer layers: phase transitions and reduction of protein adsorption. Macromol Rapid Commun 21(8):423–448Google Scholar
  176. Tan SJ, Jana NR, Gao S, Patra PK, Ying JY (2010) Surface-ligand-dependent cellular interaction, subcellular localization, and cytotoxicity of polymer-coated quantum dots. Chem Mater 22(7):2239–2247Google Scholar
  177. Tejamaya M, Römer I, Merrifield RC, Lead JR (2012) Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environ Sci Technol 46(13):7011–7017Google Scholar
  178. Thompson BC, Frechet JMJ (2008) Organic photovoltaics—polymer-fullerene composite solar cells. Angew Chem Int Ed 47(1):58–77Google Scholar
  179. Tian Y, Fendler JH (1996) Langmuir-blodgett film formation from fluorescence-activated, surfactant-capped, size-selected CdS nanoparticles spread on water surfaces. Chem Mater 8(4):969–974Google Scholar
  180. Tian ZR, Voigt JA, Liu J, Mckenzie B, Mcdermott MJ, Rodriguez MA, Konishi H, Xu H (2003) Complex and oriented ZnO nanostructures. Nat Mater 2(12):821–826Google Scholar
  181. Tian Y, Gao B, Silvera-Batista C, Ziegler KJ (2010) Transport of engineered nanoparticles in saturated porous media. J Nanopart Res 12(7):2371–2380Google Scholar
  182. Todorović Marković B, Jokanović V, Jovanović S, Kleut D, Dramićanin M, Marković Z (2009) Surface chemical modification of fullerene by mechanochemical treatment. Appl Surf Sci 255(17):7537–7541Google Scholar
  183. Treuel L, Malissek M, Grass S, Diendorf J, Mahl D, Meyer-Zaika W, Epple M (2012) Quantifying the influence of polymer coatings on the serum albumin corona formation around silver and gold nanoparticles. J Nanopart Res 14(9):1–12Google Scholar
  184. Tsai CS (2007) Bio-macromolecules: introduction to structure, function and informatics. John Wiley and Sons, HobokenGoogle Scholar
  185. Tsujii Y, Ohno K, Yamamoto S, Goto A, Fukuda T (2006) Structure and Properties of high-density polymer brushes prepared by surface-initiated living radical polymerization. In Jordan R (ed) Surface-initiated polymerization I, vol 197. Springer, Heidelberg, pp 1–45Google Scholar
  186. Unrine JM, Colman BP, Bone AJ, Gondikas AP, Matson CW (2012) Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles. Part 1, aggregation and dissolution. Environ Sci Technol 46(13):6915–6924Google Scholar
  187. Usrey ML, Strano MS (2009) Controlling single-walled carbon nanotube surface adsorption with covalent and noncovalent functionalization. J Phys Chem C 113(28):12443–12453Google Scholar
  188. Vaisman L, Marom G, Wagner HD (2006a) Dispersions of surface-modified carbon nanotubes in water-soluble and water-insoluble polymers. Adv Funct Mater 16(3):357–363Google Scholar
  189. Vaisman L, Wagner HD, Marom G (2006b) The role of surfactants in dispersion of carbon nanotubes. Adv Colloid Interface Sci 128:37–46Google Scholar
  190. Vargas A, Shnitko I, Teleki A, Weyeneth S, Pratsinis SE, Baiker A (2011) Structural dependence of the efficiency of functionalization of silica-coated FeOx magnetic nanoparticles studied by ATR-IR. Appl Surf Sci 257(7):2861–2869Google Scholar
  191. Veiseh O, Gunn JW, Zhang M (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62(3):284–304Google Scholar
  192. Wang W, Singh S, Zeng DL, King K, Nema S (2007) Antibody structure, instability, and formulation. J Pharm Sci 96(1):1–26Google Scholar
  193. Willner I, Baron R, Willner B (2007) Integrated nanoparticle-biomolecule systems for biosensing and bioelectronics. Biosens Bioelectron 22(9–10):1841–1852Google Scholar
  194. Xu ZX, Hu CY, Hu GX (2011) Layer-by-layer self-assembly of multilayer films based on humic acid. Thin Solid Films 519(13):4324–4328Google Scholar
  195. Yang P, Meng XF, Zhang ZY, Jing BX, Yuan J, Yang WT (2005) Thickness measurement of nanoscale polymer layer on polymer substrates by attenuated total reflection infrared spectroscopy. Anal Chem 77(4):1068–1074Google Scholar
  196. Yeganeh B, Kull CM, Hull MS, Marr LC (2008) Characterization of airborne particles during production of carbonaceous nanomaterials. Environ Sci Technol 42(12):4600–4606Google Scholar
  197. Zhang W, Yao Y, Sullivan N, Chen Y (2011) Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics. Environ Sci Technol 45(10):4422–4428Google Scholar
  198. Zhang Z, Zhang J, Zhang BL, Tang JL (2013) Mussel-inspired functionalization of graphene for synthesizing Ag-polydopamine-graphene nanosheets as antibacterial materials. Nanoscale 5(1):118–123Google Scholar
  199. Zhao XL, Shi YL, Ca YQ, Mou SF (2008) Cetyltrimethylammonium bromide-coated magnetic nanoparticles for the preconcentration of phenolic compounds from environmental water samples. Environ Sci Technol 42(4):1201–1206Google Scholar
  200. Zheng M, Jagota A, Semke ED, Diner BA, McLean RS, Lustig SR, Richardson RE, Tassi NG (2003) DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater 2(5):338–342Google Scholar
  201. Zook J, Long S, Cleveland D, Geronimo C, MacCuspie R (2011) Measuring silver nanoparticle dissolution in complex biological and environmental matrices using UV–visible absorbance. Anal Bioanal Chem 401(6):1993–2002Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Navid B. Saleh
    • 1
    Email author
  • Jamie R. Lead
    • 2
  • Nirupam Aich
    • 3
  • Dipesh Das
    • 3
  • Iftheker A. Khan
    • 1
  1. 1.Civil, Architectural, and Environmental Engineering, Cockrell School of EngineeringThe University of Texas at AustinAustinUSA
  2. 2.Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public HealthUniversity of South CarolinaColumbiaUSA
  3. 3.Nirupam Aich Civil, Architectural, and Environmental Engineering, Cockrell School of EngineeringThe University of Texas at AustinAustinUSA

Personalised recommendations