Advertisement

Post-GWAS Analyses

  • Daniel O. Stram
Chapter
Part of the Statistics for Biology and Health book series (SBH)

Abstract

The term post-GWAS analyses here refers to two somewhat distinct general topics; first are a compendium of analyses that are typically performed after one or more GWAS studies of a particular disease have been completed. These analyses include pooled or meta-analysis used in order to combine results of two or more studies, typically with the help of the of large-scale SNP imputation as discussed in  Chap. 6. Additional analyses include replication of results often found first in Europeans, in studies of other racial/ethnic groups. Discussion of this topic is broadened to include what has been called multiethnic fine mapping. Adjustment for local ancestry in studies of admixed groups, as an aid to fine mapping within a single group is discussed as well. Heritability estimation using GWAS data is also considered.

A second set of topics are termed post-GWAS because they relate to issues raised by a new technology, namely, next-generation whole genome sequencing (WGS), which is currently being evaluated for large-scale association studies. The main raison d’être for WGS is to allow for interrogation of rare variation that cannot be measured on GWAS SNP arrays used to date. This chapter covers some of statistical topics related to the assessment of the role of rare variation, especially composite groups of rare variation related to each other through their mode of actions, pathway membership, physical location in or between genes, etc.

Keywords

Rare Variant Risk Allele Whole Genome Sequencing GWAS Study Admix Population 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

319870_1_En_8_MOESM1_ESM.zip (1 kb)
chapter8 (ZIP 1 KB)

References

  1. 1.
    Glass, G. V. (1976). Primary, secondary, and meta-analysis of research. Educational Researcher, 5, 3–8.CrossRefGoogle Scholar
  2. 2.
    Armitage, P. (1984). Controversies and achievements in clinical trials. Controlled Clinical Trials, 5, 67–72.CrossRefGoogle Scholar
  3. 3.
    DerSimonian, R., & Laird, N. (1986). Meta-analysis in clinical trials. Controlled Clinical Trials, 7, 177–188.CrossRefGoogle Scholar
  4. 4.
    Stram, D. O. (1996). Meta-analysis of published data using a linear mixed-effects model. Biometrics, 52, 536–544.CrossRefzbMATHGoogle Scholar
  5. 5.
    Begg, C. B., & Pilote, L. (1991). A model for incorporating historical controls into a meta-analysis. Biometrics, 47.Google Scholar
  6. 6.
    Torri, V., Simon, R., Russek-Cohen, E., Midthune, D., & Friedman, M. (1992). Statistical model to determine the relationship of response and survival in patients with advanced ovarian cancer treated with chemotherapy. Journal of the National Cancer Institute, 84, 407–414.CrossRefGoogle Scholar
  7. 7.
    Lindstrom, M., & Bates, D. (1990). Nonlinear mixed effects models for repeated measures data. Biometrics, 46, 673–687.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to Meta Analysis. West Sussex, UK: Wiley.CrossRefzbMATHGoogle Scholar
  9. 9.
    Kavvoura, F. K., & Ioannidis, J. P. (2008). Methods for meta-analysis in genetic association studies: A review of their potential and pitfalls. Human Genetics, 123, 1–14.CrossRefGoogle Scholar
  10. 10.
    Hirschhorn, J. N., Lohmueller, K., Byrne, E., & Hirschhorn, K. (2002). A comprehensive review of genetic association studies. Genetics in Medicine, 4, 45–61.CrossRefGoogle Scholar
  11. 11.
    Hirschhorn, J. N., & Altshuler, D. (2002). Once and again-issues surrounding replication in genetic association studies. The Journal of Clinical Endocrinology and Metabolism, 87, 4438–4441.CrossRefGoogle Scholar
  12. 12.
    de Bakker, P. I., Ferreira, M. A., Jia, X., Neale, B. M., Raychaudhuri, S., & Voight, B. F. (2008). Practical aspects of imputation-driven meta-analysis of genome-wide association studies. Human Molecular Genetics, 17, R122–128.CrossRefGoogle Scholar
  13. 13.
    Cornelis, M. C., Agrawal, A., Cole, J. W., Hansel, N. N., Barnes, K. C., Beaty, T. H., et al. (2010). The gene, environment association studies consortium (GENEVA): Maximizing the knowledge obtained from GWAS by collaboration across studies of multiple conditions. Genetic Epidemiology, 34, 364–372.CrossRefGoogle Scholar
  14. 14.
    Matise, T. C., Ambite, J. L., Buyske, S., Carlson, C. S., Cole, S. A., Crawford, D. C., et al. (2011). The Next PAGE in understanding complex traits: Design for the analysis of population architecture using genetics and epidemiology (PAGE) study. American Journal of Epidemiology, 174, 849–859.CrossRefGoogle Scholar
  15. 15.
    Altshuler, D., Brooks, L. D., Chakravarti, A., Collins, F. S., Daly, M. J., & Donnelly, P. (2005). A haplotype map of the human genome. Nature, 437, 1299–1320.CrossRefGoogle Scholar
  16. 16.
    1000 Genomes Project Consortium. (2010). A map of human genome variation from population-scale sequencing. Nature, 467, 1061–1073.CrossRefGoogle Scholar
  17. 17.
    Wang, Z., Jacobs, K. B., Yeager, M., Hutchinson, A., Sampson, J., Chatterjee, N., et al. (2011). Improved imputation of common and uncommon SNPs with a new reference set. Nature Genetics, 44, 6–7.CrossRefGoogle Scholar
  18. 18.
    Dickson, S. P., Wang, K., Krantz, I., Hakonarson, H., & Goldstein, D. B. (2010). Rare variants create synthetic genome-wide associations. PLoS Biology, 8, e1000294.CrossRefGoogle Scholar
  19. 19.
    Falconer, D. S., & Mcackay, T. F. C. (1996). Introduction to quantitative genetics. Harlow, England: Longman.Google Scholar
  20. 20.
    Zuk, O., Hechter, E., Sunyaev, S. R., & Lander, E. S. (2012). The mystery of missing heritability: Genetic interactions create phantom heritability. PNAS, 1–6.Google Scholar
  21. 21.
    Lango Allen, H., Estrada, K., Lettre, G., Berndt, S. I., Weedon, M. N., Rivadeneira, F., et al. (2010). Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature, 467, 832–838.CrossRefGoogle Scholar
  22. 22.
    Hedges, L. V., & Olkin, I. (1985). Statistical methods for meta-analysis. London: Academic.zbMATHGoogle Scholar
  23. 23.
    Mosteller, F. (1995). The Tennessee study of class size in the early school grades. The future of children. Critical Issues for Children and Youths, 5, 113–127.Google Scholar
  24. 24.
    Zaykin, D. V. (2011). Optimally weighted Z-test is a powerful method for combining probabilities in meta-analysis. Journal of Evolutionary Biology, 24, 1836–1841.CrossRefGoogle Scholar
  25. 25.
    Won, S., Morris, N., Lu, Q., & Elston, R. C. (2009). Choosing an optimal method to combine P-values. Statistics in Medicine, 28, 1537–1553.MathSciNetCrossRefGoogle Scholar
  26. 26.
    Fisher, R. A. (1932). Statistical methods for research workers. Edinburgh: Oliver and Boyd.zbMATHGoogle Scholar
  27. 27.
    Self, S., & Liang, K.-Y. (1987). Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. Journal of the American Statistical Association, 82(398), 605–610.MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Chen, Z. (2011). Is the weighted z-test the best method for combining probabilities from independent tests? Journal of Evolutionary Biology, 24, 926–930.CrossRefGoogle Scholar
  29. 29.
    Lancaster, H. O. (1961). The combination of probabilities: An application of orthonormal functions. Australian Journal of Statistics, 3, 20–33.MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Cai, Q., Long, J., Lu, W., Qu, S., Wen, W., Kang, D., et al. (2011). Genome-wide association study identifies breast cancer risk variant at 10q21.2: Results from the Asia Breast Cancer Consortium. Human Molecular Genetics, 20, 4991–4999.CrossRefGoogle Scholar
  31. 31.
    N'Diaye, A., Chen, G. K., Palmer, C. D., Ge, B., Tayo, B., Mathias, R. A., et al. (2011). Identification, replication, and fine-mapping of Loci associated with adult height in individuals of African ancestry. PLoS Genetics, 7, e1002298.CrossRefGoogle Scholar
  32. 32.
    Chen, F., Chen, G. K., Millikan, R. C., John, E. M., Ambrosone, C. B., Bernstein, L., et al. (2011). Fine-mapping of breast cancer susceptibility loci characterizes genetic risk in African Americans. Human Molecular Genetics, 20, 4491–4503.CrossRefGoogle Scholar
  33. 33.
    Haiman, C. A., Chen, G. K., Blot, W. J., Strom, S. S., Berndt, S. I., Kittles, R. A., et al. (2011). Characterizing genetic risk at known prostate cancer susceptibility loci in African Americans. PLoS Genetics, 7, e1001387.CrossRefGoogle Scholar
  34. 34.
    Haiman, C. A., & Stram, D. O. (2010). Exploring genetic susceptibility to cancer in diverse populations. Current Opinion in Genetics and Development, 20, 330–335.CrossRefGoogle Scholar
  35. 35.
    Udler, M. S., Meyer, K. B., Pooley, K. A., Karlins, E., Struewing, J. P., Zhang, J., et al. (2009). FGFR2 variants and breast cancer risk: Fine-scale mapping using African American studies and analysis of chromatin conformation. Human Molecular Genetics, 18, 1692–1703.CrossRefGoogle Scholar
  36. 36.
    Wacholder, S., Chanock, S., Garcia-Closas, M., El Ghormli, L., & Rothman, N. (2004). Assessing the probability that a positive report is false: An approach for molecular epidemiology studies. Journal of the National Cancer Institute, 96, 434–442.CrossRefGoogle Scholar
  37. 37.
    Kang, S. J., Larkin, E. K., Song, Y., Barnholtz-Sloan, J., Baechle, D., Feng, T., et al. (2009). Assessing the impact of global versus local ancestry in association studies. BMC Proceedings, 3(Suppl 7), S107.CrossRefGoogle Scholar
  38. 38.
    Pasaniuc, B., Sankararaman, S., Kimmel, G., & Halperin, E. (2009). Inference of locus-specific ancestry in closely related populations. Bioinformatics, 25, i213–i221.CrossRefGoogle Scholar
  39. 39.
    Qin, H., Morris, N., Kang, S. J., Li, M., Tayo, B., Lyon, H., et al. (2010). Interrogating local population structure for fine mapping in genome-wide association studies. Bioinformatics, 26, 2961–2968.CrossRefGoogle Scholar
  40. 40.
    Wang, X., Zhu, X., Qin, H., Cooper, R. S., Ewens, W. J., Li, C., et al. (2010). Adjustment for local ancestry in genetic association analysis of admixed populations. Bioinformatics, 27, 670–677.CrossRefGoogle Scholar
  41. 41.
    Liu, J., Lewinger, J. P., Gilliland, F. D., Gauderman, W. J., & Conti, D. V. (2013). Confounding and heterogeneity in genetic association studies with admixed populations. American Journal of Epidemiology, 177, 351–360.CrossRefGoogle Scholar
  42. 42.
    Patterson, N., Hattangadi, N., Lane, B., Lohmueller, K. E., Hafler, D. A., Oksenberg, J. R., et al. (2004). Methods for high-density admixture mapping of disease genes. The American Journal of Human Genetics, 74, 979–1000.CrossRefGoogle Scholar
  43. 43.
    Freedman, M. L., Haiman, C. A., Patterson, N., McDonald, G. J., Tandon, A., Waliszewska, A., et al. (2006). Admixture mapping identifies 8q24 as a prostate cancer risk locus in African-American men. Proceedings of the National Academy of Sciences of the United States of America, 103, 14068–14073.CrossRefGoogle Scholar
  44. 44.
    Cheng, C. Y., Kao, W. H., Patterson, N., Tandon, A., Haiman, C. A., Harris, T. B., et al. (2009). Admixture mapping of 15,280 African Americans identifies obesity susceptibility loci on chromosomes 5 and X. PLoS Genetics, 5, e1000490.CrossRefGoogle Scholar
  45. 45.
    Fisher, R. A. (1918). The correlation between relatives on the supposition of Mendelian inheritance. Transactions of the Royal Society of Edinburgh, 52, 399–433.CrossRefGoogle Scholar
  46. 46.
    Yang, J., Benyamin, B., McEvoy, B. P., Gordon, S., Henders, A. K., Nyholt, D. R., et al. (2010). Common SNPs explain a large proportion of the heritability for human height. Nature Genetics, 42, 565–569.CrossRefGoogle Scholar
  47. 47.
    Yang, J., Lee, S. H., Goddard, M. E., & Visscher, P. M. (2011). GCTA: A tool for genome-wide complex trait analysis. The American Journal of Human Genetics, 88, 76–82.CrossRefGoogle Scholar
  48. 48.
    Yang, J., Manolio, T. A., Pasquale, L. R., Boerwinkle, E., Caporaso, N., Cunningham, J. M., et al. (2011). Genome partitioning of genetic variation for complex traits using common SNPs. Nature Genetics, 43, 519–525.CrossRefGoogle Scholar
  49. 49.
    Yang, J., Weedon, M. N., Purcell, S., Lettre, G., Estrada, K., Willer, C. J., et al. (2011). Genomic inflation factors under polygenic inheritance. European Journal of Human Genetics, 19(7), 807–812.CrossRefGoogle Scholar
  50. 50.
    Purcell, S. M., Wray, N. R., Stone, J. L., Visscher, P. M., O'Donovan, M. C., Sullivan, P. F., et al. (2009). Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature, 460, 748–752.Google Scholar
  51. 51.
    Kang, H. M., Sul, J. H., Service, S. K., Zaitlen, N. A., Kong, S. Y., Freimer, N. B., Sabatti, C., et al. (2010). Variance component model to account for sample structure in genome-wide association studies. Nature Genetics, 42, 348–354.CrossRefGoogle Scholar
  52. 52.
    Zaitlen, N., & Kraft, P. (2012). Heritability in the genome-wide association era. Human Genetics, 131(10), 1655–1664.CrossRefGoogle Scholar
  53. 53.
    Browning, S. R., & Browning, B. L. (2011). Population structure can inflate SNP-based heritability estimates. The American Journal of Human Genetics, 89, 191–193.CrossRefGoogle Scholar
  54. 54.
    Chen, F., Chen, G. K., Thomas, V., Ambrosone, C. B., Bandera, E. V., Berndt, S. I., Bernstein, L., et al. (2013) Methodological considerations related to a genome-wide assessment of height heritability among people of African Ancestry, In review Google Scholar
  55. 55.
    Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., et al. (2009). Finding the missing heritability of complex diseases. Nature, 461, 747–753.CrossRefGoogle Scholar
  56. 56.
    Nielsen, R. (2010). Genomics: In search of rare human variants. Nature, 467, 1050–1051.CrossRefGoogle Scholar
  57. 57.
    Pritchard, J. K. (2001). Are rare variants responsible for susceptibility to complex diseases? The American Journal of Human Genetics, 69, 124–137.CrossRefGoogle Scholar
  58. 58.
    Fearnhead, N. S., Winney, B., & Bodmer, W. F. (2005). Rare variant hypothesis for multifactorial inheritance: Susceptibility to colorectal adenomas as a model. Cell Cycle, 4, 521–525.CrossRefGoogle Scholar
  59. 59.
    Bodmer, W., & Bonilla, C. (2008). Common and rare variants in multifactorial susceptibility to common diseases. Nature Genetics, 40, 695–701.CrossRefGoogle Scholar
  60. 60.
    De La Vega, F. M., Bustamante, C. D., & Leal, S. M. (2011). Genome-wide association mapping and rare alleles: From population genomics to personalized medicine – Session introduction. Pacific Symposium on Biocomputing, 74–75.Google Scholar
  61. 61.
    Fu, W., O'Connor, T. D., Jun, G., Kang, H. M., Abecasis, G., Leal, S. M., et al. (2013). Analysis of 6,515 exomes reveals the recent origin of most human protein-coding variants. Nature, 493, 216–220.CrossRefGoogle Scholar
  62. 62.
    Li, Y., Willer, C. J., Ding, J., Scheet, P., & Abecasis, G. R. (2010). MaCH: Using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genetic Epidemiology, 34, 816–834.CrossRefGoogle Scholar
  63. 63.
    Wright, S. (Ed.). (1949). Adaptation and selection. Princeton, NJ: Princeton University Press.Google Scholar
  64. 64.
    Ewens, W. J. (1979). Mathematical population genetics. New York, NY: Springer.zbMATHGoogle Scholar
  65. 65.
    Abecasis, G. R., Auton, A., Brooks, L. D., DePristo, M. A., Durbin, R. M., Handsaker, R. E., et al. (2012). An integrated map of genetic variation from 1,092 human genomes. Nature, 491, 56–65.CrossRefGoogle Scholar
  66. 66.
    Hamosh, A., Scott, A. F., Amberger, J. S., Bocchini, C. A., & McKusick, V. A. (2005). Online Mendelian inheritance in man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Research, 33, D514–517.CrossRefGoogle Scholar
  67. 67.
    Huang, H., Winter, E. E., Wang, H., Weinstock, K. G., Xing, H., Goodstadt, L., et al. (2004). Evolutionary conservation and selection of human disease gene orthologs in the rat and mouse genomes. Genome Biology, 5, R47.CrossRefGoogle Scholar
  68. 68.
    Madsen, B. E., & Browning, S. R. (2009). A groupwise association test for rare mutations using a weighted sum statistic. PLoS Genetics, 5, e1000384.CrossRefGoogle Scholar
  69. 69.
    Hauck, W., & Donner, A. (1977). Wald’s test as applied to hypotheses in Logit analysis. JASA, 72, 851–853.MathSciNetzbMATHGoogle Scholar
  70. 70.
    Hirji, K. F., Mehta, C. R., & Patel, N. R. (1987). Computing distributions for exact logistic regression. JASA, 82, 1110–1117.MathSciNetCrossRefzbMATHGoogle Scholar
  71. 71.
    Haiman, C. A., Han, Y., Feng, Y., Xia, L., Hsu, C., Sheng, X., et al. (2013). Genome-wide testing of putative functional exonic variants in relationship with breast and prostate cancer risk in a multiethnic population. PLoS Genetics, 9(3), e1003419.CrossRefGoogle Scholar
  72. 72.
    Basu, S., & Pan, W. (2011). Comparison of statistical tests for disease association with rare variants. Genetic Epidemiology, 35, 606–619.CrossRefGoogle Scholar
  73. 73.
    James, W., & Stein, C. (1961). Estimation with quadratic loss. Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, 1, 361–379.MathSciNetGoogle Scholar
  74. 74.
    Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 42, 80–86.CrossRefGoogle Scholar
  75. 75.
    Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society, Series B, 58, 267–288.MathSciNetzbMATHGoogle Scholar
  76. 76.
    Greenland, S. (2000). Principles of multilevel modelling. International Journal of Epidemiology, 29, 158–167.CrossRefGoogle Scholar
  77. 77.
    Lewinger, J. P., Conti, D. V., Baurley, J. W., Triche, T. J., & Thomas, D. C. (2007). Hierarchical Bayes prioritization of marker associations from a genome-wide association scan for further investigation. Genetic Epidemiology, 31, 871–882.CrossRefGoogle Scholar
  78. 78.
    Ramensky, V., Bork, P., & Sunyaev, S. (2002). Human non-synonymous SNPs: Server and survey. Nucleic Acids Research, 30, 3894–3900.CrossRefGoogle Scholar
  79. 79.
    Kumar, P., Henikoff, S., & Ng, P. C. (2009). Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nature Protocols, 4, 1073–1081.CrossRefGoogle Scholar
  80. 80.
    He, J. (2013). Polygenes and Estimated Heritability of Prostate Cancer in an African American Sample using GWAS data, PhD Thesis, Preventive Medicine, University of Southern California, Los AngelesGoogle Scholar
  81. 81.
    Anderson, T. W. (1973). Asympotically efficient estimation of covariance matrices with linear structure. The Annals of Statistics, 1, 135–141.MathSciNetCrossRefzbMATHGoogle Scholar
  82. 82.
    Wu, M. C., Lee, S., Cai, T., Li, Y., Boehnke, M., & Lin, X. (2011). Rare-variant association testing for sequencing data with the sequence kernel association test. The American Journal of Human Genetics, 89, 82–93.CrossRefGoogle Scholar
  83. 83.
    O'Roak, B. J., Deriziotis, P., Lee, C., Vives, L., Schwartz, J. J., Girirajan, S., et al. (2011). Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nature Genetics, 43, 585–589.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Daniel O. Stram
    • 1
  1. 1.Department of Preventive MedicineUniversity of Southern California Keck School of MedicineLos AngelesUSA

Personalised recommendations