Biosonar pp 195-229 | Cite as

On-Animal Methods for Studying Echolocation in Free-Ranging Animals

  • Mark Johnson
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 51)


Although still relatively new, sound sampling tags are proving to be powerful tools for studying echolocation in the wild. Compared to remote camera or listening systems that receive only fleeting glimpses of individuals, a tag follows an animal for periods of hours as it navigates and forages in its natural environment. Sensors can be added to sample movements, physiological parameters, and the environment of the animal. Such multisensor sound tags have been used extensively on odontocetes enabling fine-scale studies of prey search, selection, and capture behaviors that are expanding our knowledge of species traditionally thought of as hard to study. Given the severe weight constraint on tags for bats, short-range telemetry devices are still the only option for on-animal sound sensing. These have been used to study signal adaptation in captive animals but telemetry range is limited for outdoors use.

On-animal sound recordings can be difficult to interpret because of the density of the data and because of limitations associated with the location of the tag on the animal. New creative ways to explore multidimensional datasets that convey also the uncertainties inherent in these data are essential to unlock the full potential of sound tags in echolocation studies. Standardized ways to exchange and compare data are also needed to combine the small numbers of tag deployments typically achievable into a larger ecological picture.


Bats Echogram Event detection Foraging Movement sensors Sensor fusion Sound recording Sound-source parameters Tags Toothed whales Visualization 



Thanks to T. Horiuchi, P. Madsen, N. Aguilar, T. Hurst, and A. Surlykke for helpful discussions. Funds from the National Oceanographic Partnership Program, a Woods Hole Oceanographic Institution senior technical award, the Marine Alliance for Science and Technology, Scotland, and a Marie Curie Career Integration Grant, supported the preparation of this chapter.


  1. Akamatsu, T., Matsuda, A., Suzuki, S., Wang, D., Wang, K., Suzuki, M., Muramoto, H., Sugiyama, N., & Oota, K. (2005a). New stereo acoustic data logger for free-ranging dolphins and porpoises. Marine Technology Society Journal, 39(2), 3–9.CrossRefGoogle Scholar
  2. Akamatsu, T., Wang, D., Wang, K., & Naito, Y. (2005b). Biosonar behaviour of free-ranging porpoises. Proceedings of the Royal Society of London B: Biological Sciences, 272(1565), 797–801.CrossRefGoogle Scholar
  3. Akamatsu, T., Wang, D., & Wang, K. (2005c). Off-axis sonar beam pattern of free-ranging finless porpoises measured by a stereo pulse event data logger. Journal of the Acoustical Society of America, 117(5), 3325–3330.CrossRefGoogle Scholar
  4. Akamatsu, T., Teilmann, J., Miller, L. A., Tougaard, J., Dietz, R., Wang, D., Wang, K., Siebert, U., & Naito, Y. (2007). Comparison of echolocation behaviour between coastal and riverine porpoises. Deep-Sea Research Part II: Topical Studies in Oceanography, 54(3–4), 290–297.CrossRefGoogle Scholar
  5. Akamatsu, T., Wang, D., Wang, K., Li, S., & Dong, S. (2010). Scanning sonar of rolling porpoises during prey capture dives. Journal of Experimental Biology, 213, 146–152.PubMedCrossRefGoogle Scholar
  6. Aldridge, H. D. J. N., & Brigham, R. M. (1988). Load carrying and maneuverability in an insectivorous bat: a test of the 5 % “rule” of radio telemetry. Journal of Mammalogy, 69(2), 379–382.CrossRefGoogle Scholar
  7. Ancel, A., Horning, M., & Kooyman, G. L. (1997). Prey ingestion revealed by oesophagus and stomach temperature recordings in cormorants. Journal of Experimental Biology, 200(Pt 1), 149–154.PubMedGoogle Scholar
  8. Andrews, R. D., Jones, D. R., Williams, J. D., Thorson, P. H., Oliver, G. W., Costa, D. P., & Le Boeuf, B. J. (1997). Heart rates of northern elephant seals diving at sea and resting on the beach. Journal of Experimental Biology, 200(Pt 15), 2083–2095.PubMedGoogle Scholar
  9. Arranz, P., Aguilar de Soto, N., Madsen, P. T., Brito, A., Bordes, F., & Johnson, M. P. (2011). Following a foraging fish-finder: diel habitat use of Blainville’s beaked whales revealed by echolocation. PLoS ONE, 6(12), e28353.Google Scholar
  10. Au, W. W. L. (1993). The sonar of dolphins. New York: Springer-Verlag.CrossRefGoogle Scholar
  11. Au, W. W. L., & Benoit-Bird, K. J. (2003). Automatic gain control in the echolocation system of dolphins. Nature, 423(6942), 861–863.PubMedCrossRefGoogle Scholar
  12. Bar-Shalom, Y., Li, X. R., & Kirubarajan, T. (2001). Estimation with applications to tracking and navigation: Theory algorithms and software. New York: John Wiley & Sons.CrossRefGoogle Scholar
  13. Blackwell, S. B., Haverl, C. A., Le Boeuf, B. J., & Costa, D. P. (1999). A method for calibrating swim-speed recorders. Marine Mammal Science, 15, 894–905.CrossRefGoogle Scholar
  14. Blomqvist, C., & Amundin, M. (2004). An acoustic tag for recording directional pulsed ultrasounds aimed at free-swimming bottlenose dolphins (Tursiops truncatus) by conspecifics. Aquatic Mammals, 30(3), 345–356.CrossRefGoogle Scholar
  15. Burgess, W. C. (2008). A miniature acoustic recording tag: Applications to assess marine wildlife response to sound (No. GS0105A-0801). Santa Barbara, CA: Greeneridge Sciences, Inc.Google Scholar
  16. Burgess, W. C., Tyack, P. L., Le Boeuf, B. J., & Costa, D. P. (1998). A programmable acoustic recording tag and first results from free-ranging northern elephant seals. Deep-Sea Research Part II: Topical Studies in Oceanography, 45(7), 1327–1351.CrossRefGoogle Scholar
  17. Burwen, D. L., Fleischman, S. J., Miller, J. D., & Jensen, M. E. (2003). Time-based signal characteristics as predictors of fish size and species for a side-looking hydroacoustic application in a river. ICES Journal of Marine Science: Journal du Conseil, 60(3), 662–668.CrossRefGoogle Scholar
  18. Caccamise, D. F., & Hedin, R. S. (1985). An aerodynamic basis for selecting transmitter loads in birds. Wilson Bulletin, 97(3), 306–318.Google Scholar
  19. Chruszcz, B. J., & Barclay, R. M. (2003). Prolonged foraging bouts of a solitary gleaning/hawking bat, Myotis evotis. Canadian Journal of Zoology, 81(5), 823–826.CrossRefGoogle Scholar
  20. Cooke, S. J., Hinch, S. G., Wikelski, M., Andrews, R. D., Kuchel, L. J., Wolcott, T. G., & Butler, P. J. (2004). Biotelemetry: A mechanistic approach to ecology. Trends in Ecology & Evolution, 19(6), 334–343.CrossRefGoogle Scholar
  21. Davis, R. W., Fuiman, L. A., Williams, T. M., Collier, S. O., Hagey, W. P., Kanatous, S. B, Kohin, S., & Horning, M. (1999). Hunting behavior of a marine mammal beneath the Antarctic fast ice. Science, 283(5404), 993–996.PubMedCrossRefGoogle Scholar
  22. Dechmann, D. K., Heucke, S. L, Giuggioli, L., Safi, K., Voigt, C. C., & Wikelski, M. (2009). Experimental evidence for group hunting via eavesdropping in echolocating bats. Proceedings of the Royal Society of London B: Biological Sciences, 276(1668), 2721–2728.CrossRefGoogle Scholar
  23. Dietz, R., Shapiro, A. D., Bakhtiari, M., Orr, J., Tyack, P. L., Richard, P., Eskesen, I. G., & Marshall, G. (2007). Upside-down swimming behaviour of free-ranging narwhals. BMC Ecology, 7(1), 14.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Ezer, T., Hobbs, R., & Oey, L.-Y. (2008). On the movement of beluga whales in Cook Inlet, Alaska: Simulations of tidal and environmental impacts using a hydrodynamic inundation model. Oceanography, 21(4), 186–195.CrossRefGoogle Scholar
  25. Fletcher, S., Le Boeuf, B. J., Costa, D. P., Tyack, P. L., & Blackwell, S. B. (1996). Onboard acoustic recording from diving northern elephant seals. Journal of the Acoustical Society of America, 100(4 Pt 1), 2531–2539.PubMedCrossRefGoogle Scholar
  26. Ghose, K., & Moss, C. F. (2003). The sonar beam pattern of a flying bat as it tracks tethered insects. Journal of the Acoustical Society of America, 114(2), 1120–1131.PubMedCentralPubMedCrossRefGoogle Scholar
  27. Ghose, K., & Moss, C. F. (2006). Steering by hearing: A bat’s acoustic gaze is linked to its flight motor output by a delayed, adaptive linear law. Journal of Neuroscience, 26(6), 1704–1710.PubMedCentralPubMedCrossRefGoogle Scholar
  28. Gleiss, A. C., Wilson, R. P., & Shepard, E. L. C. (2011). Making overall dynamic body acceleration work: On the theory of acceleration as a proxy for energy expenditure. Methods in Ecology and Evolution, 2(1), 23–33.CrossRefGoogle Scholar
  29. Grewal, M. S., Weill, L. R., & Andrews, A. P. (2007). Global positioning systems, inertial navigation, and integration. New York: John Wiley & Sons.Google Scholar
  30. Henson, O. W., Jr., Bishop, A. L., Keating, A., Kobler, J. B., Henson, M. M., Wilson, B., & Hansen, R. (1987). Biosonar imaging of insects by Pteronotus p. parnellii, the mustached bat. National Geographic Research, 3, 82–101.Google Scholar
  31. Hiryu, S., Katsura, K., Lin, L. K., Riquimaroux, H., & Watanabe, Y. (2005). Doppler-shift compensation in the Taiwanese leaf-nosed bat (Hipposideros terasensis) recorded with a telemetry microphone system during flight. Journal of the Acoustical Society of America, 118(6), 3927–3933.PubMedCrossRefGoogle Scholar
  32. Hiryu, S., Hagino, T., Riquimaroux, H., & Watanabe, Y. (2007). Echo-intensity compensation in echolocating bats (Pipistrellus abramus) during flight measured by a telemetry microphone. Journal of the Acoustical Society of America, 121(3), 1749–1757.PubMedCrossRefGoogle Scholar
  33. Hiryu, S., Shiori, Y., Hosokawa, T., Riquimaroux, H., & Watanabe, Y. (2008). On-board telemetry of emitted sounds from free-flying bats: Compensation for velocity and distance stabilizes echo frequency and amplitude. Journal of Comparative Physiology A, 194(9), 841–851.CrossRefGoogle Scholar
  34. Hiryu, S., Bates, M. E., Simmons, J. A., & Riquimaroux, H. (2010). FM echolocating bats shift frequencies to avoid broadcast-echo ambiguity in clutter. Proceedings of the National Academy of Sciences of the USA, 107(15), 7048–7053. PubMedCentralPubMedCrossRefGoogle Scholar
  35. Hooker, S. K., & Baird, R. W. (2001). Diving and ranging behaviour of odontocetes: A methodological review and critique. Mammal Review, 31(1), 81–105.CrossRefGoogle Scholar
  36. Houser, D., Martin, S. W., Bauer, E. J., Phillips, M., Herrin, T., Cross, M., Vidal, A., & Moore, P. W. (2005). Echolocation characteristics of free-swimming bottlenose dolphins during object detection and identification. Journal of the Acoustical Society of America, 117(1), 2308–2317.PubMedCrossRefGoogle Scholar
  37. Johnson, M. P., & Tyack, P. L. (2003). A digital acoustic recording tag for measuring the response of wild marine mammals to sound. IEEE Journal of Oceanic Engineering, 28(1), 3–12.CrossRefGoogle Scholar
  38. Johnson, M. P., Madsen, P. T., Zimmer, W. M. X., Aguilar de Soto, N., & Tyack, P. L. (2004). Beaked whales echolocate on prey. Proceedings of the Royal Society of London B: Biological Sciences, 271(Suppl 6), S383–S386.CrossRefGoogle Scholar
  39. Johnson, M. P., Madsen, P. T., Zimmer, W. M. X., Aguilar de Soto, N., & Tyack, P. L. (2006). Foraging Blainville’s beaked whales (Mesoplodon densirostris) produce distinct click types matched to different phases of echolocation. Journal of Experimental Biology, 209(24), 5038–5050.PubMedCrossRefGoogle Scholar
  40. Johnson, M. P., Hickmott, L. S., Aguilar de Soto, N., & Madsen, P. T. (2008). Echolocation behaviour adapted to prey in foraging Blainville’s beaked whale (Mesoplodon densirostris). Proceedings of the Royal Society of London B: Biological Sciences, 275(1631), 133–139.CrossRefGoogle Scholar
  41. Johnson, M. P., Aguilar de Soto, N., & Madsen, P. T. (2009). Studying the behaviour and sensory ecology of marine mammals using acoustic recording tags: A review. Marine Ecology Progress Series, 395, 55–73.CrossRefGoogle Scholar
  42. Johnson, M. P., Partan, J., & Hurst, T. (2013). Low complexity lossless compression of underwater sound recordings. Journal of the Acoustical Society of America, 133(3), 1387–1398.PubMedCrossRefGoogle Scholar
  43. Jones, B. A., Stanton, T. K., Lavery, A. C., Johnson, M. P, Madsen, P. T., & Tyack, P. L. (2008). Classification of broadband echoes from prey of a foraging Blainville’s beaked whale. Journal of the Acoustical Society of America, 123(3), 1753–1762.PubMedCrossRefGoogle Scholar
  44. Kay, S. (1998). Fundamentals of statistical signal processing, Vol. 2: Detection theory. Upper Saddle River, NJ: Prentice Hall.Google Scholar
  45. Lancaster, W. C., Keating, A. W., & Henson, O. W. (1992). Ultrasonic vocalizations of flying bats monitored by radiotelemetry. Journal of Experimental Biology, 173(1), 43–58.PubMedGoogle Scholar
  46. Lancaster, W. C., Henson, O. W., & Keating, A. W. (1995). Respiratory muscle activity in relation to vocalization in flying bats. Journal of Experimental Biology, 198(1), 175–191.PubMedGoogle Scholar
  47. Lawrence, B. D., & Simmons, J. A. (1982). Measurements of atmospheric attenuation at ultrasonic frequencies and the significance for echolocation by bats. Journal of the Acoustical Society of America, 71(3), 585–590.PubMedCrossRefGoogle Scholar
  48. Liu, C. M., Hsu, H. W., & Lee, W. C. (2008). Compression artifacts in perceptual audio coding. IEEE Transactions on Audio , Speech , and Language Processing , 16(4), 681–695. Google Scholar
  49. Love, R. H. (1977). Target strength of an individual fish at any aspect. Journal of the Acoustical Society of America, 62(6), 1397–1403.CrossRefGoogle Scholar
  50. MacLean, G. (2009). Weak GPS signal detection in animal tracking. Journal of Navigation, 62(1), 1–21.CrossRefGoogle Scholar
  51. Madsen, P. T., & Wahlberg, M. (2007). Recording and quantification of ultrasonic echolocation clicks from free-ranging toothed whalese. Deep-Sea Research Part I: Oceanographic Research Papers, 54(8), 1421–1444.CrossRefGoogle Scholar
  52. Madsen, P. T., Payne, R., Kristiansen, N. U., Wahlberg, M., Kerr, I., & Møhl, B. (2002). Sperm whale sound production studied with ultrasound-time/depth-recording tags. Journal of Experimental Biology, 205(13), 1899–1906.PubMedGoogle Scholar
  53. Madsen, P. T., Johnson, M. P., Aguilar de Soto, N., Zimmer, W. M. X., & Tyack, P. L. (2005). Biosonar performance of foraging beaked whales (Mesoplodon densirostris). Journal of Experimental Biology, 208(2), 181–194.PubMedCrossRefGoogle Scholar
  54. Madsen, P. T., Aguilar de Soto, N., Arranz, P., & Johnson, M. P. (2013). Echolocation in Blainville’s beaked whales (Mesoplodon densirostris). Journal of Comparative Physiology, 199(6), 451–469.PubMedCrossRefGoogle Scholar
  55. Marshall, G., Bakhtiari, M., Shepard, M., Tweedy III, J., Rasch, D., Abernathy, K., Joliff, B., Carrier, J., & Heithaus, M. R. (2007). An advanced solid-state animal-borne video and environmental data-logging device (Crittercam) for marine research. Marine Technology Society Journal, 41(2), 31–38.CrossRefGoogle Scholar
  56. Martin, S. W., Phillips, M., Bauer, E. J., Moore, P. W., & Houser, D. S. (2005). Instrumenting free-swimming dolphins echolocating in open water. Journal of the Acoustical Society of America, 117(4 Pt 1), 2301–2307.PubMedCrossRefGoogle Scholar
  57. Meyer, C. F. J., Weinberg, M., & Kalko, E. K. V. (2005). Home-range size and spacing patterns of Macrophyllum macrophyllum (Phyllostomidae) foraging over water . Journal of Mammalogy. 86(3), 587–598.CrossRefGoogle Scholar
  58. Mitani, Y., Sato, K., Ito, S., Cameron, M. F., Siniff, D. B., & Naito, Y. (2003). A method for reconstructing three-dimensional dive profiles of marine mammals using geomagnetic intensity data: Results from two lactating Weddell seals. Polar Biology, 26(5), 311–317.Google Scholar
  59. Møhl, B., Wahlberg, M., Madsen, P. T., Miller, L. A., & Surlykke, A. (2000). Sperm whale clicks: Directionality and source level revisited. Journal of the Acoustical Society of America, 107(1), 638–648.PubMedCrossRefGoogle Scholar
  60. Mueller, A., Burwen, D. L., Boswell, K. M., & Mulligan, T. (2010). Tail-beat patterns in dual-frequency identification sonar echograms and their potential use for species identification and bioenergetics studies. Transactions of the American Fisheries Society, 139(3), 900–910.CrossRefGoogle Scholar
  61. Orfanidis, S. J. (2010). Introduction to signal processing. Rutgers University. (available free at:
  62. Pavlov, V. V., Wilson, R. P., & Lucke, K. (2007). A new approach to tag design in dolphin telemetry: Computer simulations to minimise deleterious effects. Deep-Sea Research Part II: Tropical Studies in Oceanography, 54(3), 404–414.CrossRefGoogle Scholar
  63. Phillips, R. A., Xavier, J. C., & Croxall, J. P. (2003). Effects of satellite transmitters on albatrosses and petrels. The Auk, 120(4), 1082–1090.CrossRefGoogle Scholar
  64. Read, A. J., & Westgate, A. J. (1997). Monitoring the movements of harbour porpoises ( Phocoena phocoena ) with satellite telemetry. Marine Biology , 130, 315–322. Google Scholar
  65. Riquimaroux, H., Osawa, Y., & Watanabe, Y. (2007). Strategy for vocalization taken by FM bats during group flight measured by a wireless microphone system. Journal of the Acoustical Society of America , 121(5), 3037 (abstract only). Google Scholar
  66. Ropert-Coudert, Y., & Wilson, R. P. (2005). Trends and perspectives in animal-attached remote sensing. Frontiers in Ecology and the Environment, 3(8), 437–444.CrossRefGoogle Scholar
  67. Ropert-Coudert, Y., Kato, A., Liebsch, N., Wilson, R. P., Muller, G., & Baubet, E. (2004). Monitoring jaw movements: A cue to feeding activity. Game and Wildlife Science, 21(1), 1–20.Google Scholar
  68. Shepard, E. L. C., Wilson, R. P., Liebsch, N., Quintana, F., Laich, A. G., & Lucke, K. (2008). Flexible paddle sheds new light on speed: A novel method for the remote measurement of swim speed in aquatic animals. Endangered Species Research, 4(1–2), 157–164.CrossRefGoogle Scholar
  69. Shiomi, K., Narazaki, T., Sato, K., Shimatani, K., Arai, N., Ponganis, P. J., & Miyazaki, N. (2010). Data-processing artefacts in 3-D dive path reconstruction from geomagnetic and acceleration data. Aquatic Biology, 8, 299–304.CrossRefGoogle Scholar
  70. Simmonds, E. J., Armstrong, F., & Copland, P. J. (1996). Species identification using wideband backscatter with neural network and discriminant analysis. ICES Journal of Marine Science: Journal du Conseil, 53(2), 189–195.CrossRefGoogle Scholar
  71. Simon, M., Johnson, M. P., & Madsen, P. T. (2012). Keeping momentum with a mouthful of water: Behavior and kinematics of humpback whale lunge feeding, Journal of Experimental Biology, 215, 3786–3798.PubMedCrossRefGoogle Scholar
  72. Spiesberger, J. L., & Fristrup, K. M. (1990). Passive localization of calling animals and sensing of their acoustic environment using acoustic tomography. American Naturalist, 135, 107–153.CrossRefGoogle Scholar
  73. Surlykke, A., Filskov, M., Fullard, J. H., & Forrest, E. (1999). Auditory relationships to size in noctuid moths: Bigger is better. Naturwissenschaften, 86, 238–241.CrossRefGoogle Scholar
  74. Surlykke, A., & Kalko, E. K. V. (2008). Echolocating bats cry out loud to detect their prey. PLoS ONE 3(4), e2036.PubMedCentralPubMedCrossRefGoogle Scholar
  75. Teloni, V., Johnson, M., Miller, P. J. O., & Madsen, P. T. (2008). Shallow food for deep divers: Dynamic foraging behavior of male sperm whales in a high latitude habitat. Journal of Experimental Marine Biology & Ecology, 354, 119–131.CrossRefGoogle Scholar
  76. Tyack, P. L., Johnson, M. P., Aguilar de Soto, N., Sturlese, A., & Madsen, P. T. (2006). Extreme diving of beaked whales. Journal of Experimental Biology, 209(21), 4238–4253.PubMedCrossRefGoogle Scholar
  77. Wahlberg, M., Møhl, B., & Madsen, P. T. (2001). Estimating source position accuracy of a large-aperture hydrophone array for bioacoustics. Journal of the Acoustical Society of America, 109(1), 397–406.CrossRefGoogle Scholar
  78. Ward Shaffer, J., Moretti, D., Jarvis, S., Tyack, P. L., & Johnson, M. P. (2013). Effective beam pattern of the Blainville’s beaked whale (Mesoplodon densirostris) and implications for passive acoustic monitoring. Journal of the Acoustical Society of America, 133(3), 1770–1784.CrossRefGoogle Scholar
  79. Ware, C., Arsenault, R., Plumlee, M., & Wiley, D. (2006). Visualizing the underwater behavior of humpback whales. IEEE Computer Graphics and Applications, 26(4), 14–18.PubMedCrossRefGoogle Scholar
  80. Waters, D. A., Rydell, J., & Jones, G. (1995). Echolocation call design and limits on prey size: A case study using the aerial-hawking bat Nyctalus leisleri. Behavioural Ecology & Sociobiology 37, 321–328.CrossRefGoogle Scholar
  81. Watkins, W. A., Daher, M. A., Fristrup, K. M., & Howald, T. J. (1993). Sperm whales tagged with transponders and tracked underwater by sonar. Marine Mammal Science, 9(1), 55–67.CrossRefGoogle Scholar
  82. Westgate, A. J., McLellan, W. A., Wells, R. S., Scott, M. D., Meagher, E. M., & Pabst, D. A. (2007). A new device to remotely measure heat flux and skin temperature from free-swimming dolphins. Journal of Experimental Marine Biology and Ecology, 346(1), 45–59.CrossRefGoogle Scholar
  83. Wilson, R. P., & Wilson, M. P. (1988). Dead reckoning: a new technique for determining penguin movements at sea. Meeresforschung, 32, 155–158.Google Scholar
  84. Wilson, R. P., & McMahon, C. R. (2006). Measuring devices on wild animals: What constitutes acceptable practice? Frontiers in Ecology and the Environment, 4(3), 147–154.CrossRefGoogle Scholar
  85. Wilson, R. P., Grant, W. S., & Duffy, D. C. (1986). Recording devices on free-ranging marine animals: Does measurement affect foraging performance? Ecology, 67(4), 1091–1093.CrossRefGoogle Scholar
  86. Wilson, R. P., White, C. R., Quintana, F., Halsey, L. G., Liebsch, N., Martin, G. R., & Butler, P. J. (2006). Moving towards acceleration for estimates of activity-specific metabolic rate in free-living animals: The case of the cormorant. Journal of Animal Ecology, 75(5), 1081–1090.PubMedCrossRefGoogle Scholar
  87. Wilson, R. P., Liebsch, N., Davies, I. M., Quintana, F., Weimerskirch, H., Storch, S., Lucke, K., Siebert, U., Zankl, S., Müller, G., Zimmer, I., Scolaro, A., Campagna, C., Plötz, J., Bornemann, H., Teilmann, J., & McMahon, C. R. (2007). All at sea with animal tracks: Methodological and analytical solutions for the resolution of movement. Deep-Sea Research Part II: Topical Studies in Oceanography, 54(3), 193–210.CrossRefGoogle Scholar
  88. Wisniewska, D. M., Johnson, M. P., Beedholm, K., Wahlberg, M., & Madsen, P. T. (2012). Acoustic gaze adjustment during active target selection in echolocating porpoises. Journal of Experimental Biology, 215(24), 4358–4373.PubMedCrossRefGoogle Scholar
  89. Zimmer, W. M. X., Johnson, M. P., D’Amico, A., & Tyack, P. L. (2003). Combining data from a multisensor tag and passive sonar to determine the diving behavior of a sperm whale (Physeter macrocephalus). IEEE Journal of Oceanic Engineering, 28(1), 13–28.CrossRefGoogle Scholar
  90. Zimmer, W. M. X., Johnson, M. P., Madsen, P. T., & Tyack, P. L. (2005a). Echolocation clicks of free-ranging Cuvier’s beaked whales (Ziphius cavirostris). Journal of the Acoustical Society of America, 117(6), 3919–3927.PubMedCrossRefGoogle Scholar
  91. Zimmer, W. M. X., Tyack, P. L., Johnson, M. P., & Madsen, P. T. (2005b). Three-dimensional beam pattern of regular sperm whale clicks confirms bent-horn hypothesis. Journal of the Acoustical Society of America, 117(3 Pt 1), 1473–1485.PubMedCrossRefGoogle Scholar
  92. Zimmer, W. M. X., Madsen, P. T., Teloni, V., Johnson, M. P., & Tyack, P. L. (2005c). Off-axis effects on the multipulse structure of sperm whale usual clicks with implications for sound production. Journal of the Acoustical Society of America, 118(5), 3337–3345.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York 2014

Authors and Affiliations

  1. 1.Sea Mammal Research UnitUniversity of St. AndrewsSt. AndrewsScotland

Personalised recommendations