UWB and mmWave Communication Techniques and Systems for Healthcare

Chapter

Abstract

Telemedicine has been around for decades, and some apparatuses are currently in operation in few hospitals. Relying on advanced wireless technologies, which enable the use of pervasive communications for a variety of different applications, new-generation systems for healthcare become non-invasive, broadband and mobile. High-data rate wireless systems allow users to share huge amounts of data and multimedia content with other users or with service providers. Consequently, the range of potential applications of healthcare assistance expands to include new scenarios that involve very high data rate wireless transmissions like, for instance, seamless exchange of multimedia content. In this chapter, a survey of new-generation wireless communication techniques and systems based on ultra-wideband technology and millimetre-waves radios is provided, with reference to the modern concepts of patient-centric and hospital-centric application scenarios. The opportunities offered by these two broadband wireless communications technologies beyond basic data transfer are highlighted and discussed in the framework of the new application scenarios that these technologies open.

Keywords

mmWave radios 60-GHz communications UWB communications Wireless body area networks eHealth Healthcare communication systems Remote patient monitoring Pervasive communications Uncompressed video Quality of service 

References

  1. 1.
    F. Delmastro, Pervasive communications in healthcare. Comput. Commun. 35, 1284–1295 (2012)CrossRefGoogle Scholar
  2. 2.
    C. Park, T. Rappaport, Short-range wireless communications for next-generation networks: UWB, 60 GHz millimeter-wave WPAN, and ZigBee. IEEE Wirel. Commun. 14(4), 70–78 (2007)CrossRefGoogle Scholar
  3. 3.
    D. Cassioli, M.Z. Win, A.F. Molisch, The ultra-wide bandwidth indoor channel: from statistical model to simulations. IEEE J. Sel. Area. Comm. 20, 1247–1257 (Aug 2002)CrossRefGoogle Scholar
  4. 4.
    A.F. Molisch, D. Cassioli, C.-C. Chong, S. Emami, A. Fort, B. Kannan, J. Karedal, J. Kunisch, H.G. Schantz, K. Siwiak, M.Z. Win, A comprehensive standardized model for ultrawideband propagation channels. IEEE T. Antenn. Propag. 54(11), Part 1, 3151–3166 (Nov 2006)CrossRefGoogle Scholar
  5. 5.
    G. Valerio, N. Chahat, M. Zhadobov, R. Sauleau, Theoretical and experimental characterization of on-body propagation at 60 GHz. 7th European Conference on Antennas and Propagation (EUCAP 2013)—Convened SessionsGoogle Scholar
  6. 6.
    N. Chahat, M. Zhadobov, L. Le Coq, S.I. Alekseev, R. Sauleau, Characterization of the interactions between a 60 GHz antenna and the human body in an off-body scenario. IEEE T. Antenn. Propag. 60(12) (Dec 2012)Google Scholar
  7. 7.
    L. Berardinelli, D. Cassioli, A. Di Marco, A. Esposito, M.T. Riviello, C. Trubiani, VISION as a support to cognitive behavioural systems. Cognitive Behavioural Systems, EUCogII-SSPnet-COST 2102—Lecture Notes in Computer Science (LNCS, Springer), 2012Google Scholar
  8. 8.
    http://www.vision-ercproject.eu. Accessed 1 July 2013
  9. 9.
    W. Rhee, N. Xu, B. Zhou, Z. Wang, Low power, non invasive UWB systems for WBAN 2 biomedical applications. International Conference on Information and Communication Technology Convergence (ICTC), 35–40, 2010Google Scholar
  10. 10.
    M. Hämäläinen, A. Taparugssanagorn, R. Tesi, J. Iinatti, Wireless Medical Communications Using UWB. ICUWB 2009 (9–11 Sept 2009)Google Scholar
  11. 11.
    B. Latré, B. Braem, I. Moerman, C. Blondia, P. Demeester, A survey on wireless body area networks. Wirel. Netw. 17, 1–18 (2011)CrossRefGoogle Scholar
  12. 12.
    M.Z. Win, R.A. Scholtz, Impulse radio: how it works. IEEE Commun. Lett. 2(1) (Jan 1998)Google Scholar
  13. 13.
    E. Staderini, UWB radars in medicine. IEEE Aero. El. Sys. Mag. 17(1), 13–18 (2002)CrossRefGoogle Scholar
  14. 14.
    E. Cianca, B. Gupta, FM-UWB for communications and radar in medical applications. Wireless Pers. Commun. 51(4), 793–809 (2009)CrossRefGoogle Scholar
  15. 15.
    F. Delmastro, Pervasive communications in healthcare. Comput. Commun. 35, 1284–1295 (2012)Google Scholar
  16. 16.
    IEEE 802.15 WPAN™ Task Group 6 Body Area Networks (BAN), website URL: http://www.ieee802.org/15/pub/TG6.html
  17. 17.
    M.R. Mahfouz, G. To, M.J. Kuhn, Smart instruments: wireless technology invades the operating room. IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS 2012), Santa Clara, CA, 33–36 (15–18 Jan 2012)Google Scholar
  18. 18.
    B. Merkl, M. Kuhn, M. Mahfouz, D. DeBoer, Surgical navigation systems: evaluating electromagnetic versus optical technology in the OR. Annual Meeting of American Academy of Orthopaedic Surgeons, San Francisco, CA, 2008.Google Scholar
  19. 19.
    C. Zhang, M. Kuhn, B. Merkl, A. Fathy, M. Mahfouz, Realtime non-coherent UWB positioning radar with millimeter range accuracy: theory and experiment. IEEE T. Microw. Theory 58(1), 9–20 (2010)CrossRefGoogle Scholar
  20. 20.
    M. Kuhn, M. Mahfouz, J. Turnmire, Y. Wang, A. Fathy, A multi-tag access scheme for indoor UWB localization systems used in medical environments. IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS), Phoenix, AZ, 75–78, 2011Google Scholar
  21. 21.
    E. Elkhouly, A. Fathy, M. Kuhn, M. Mahfouz, Investigation of challenges towards achieving sub-millimeter accuracy for UWB localization. IEEE International Symposium on Antennas and Propagation, Spokane, WA (July 2011)Google Scholar
  22. 22.
    M.J. Kuhn, M.R. Mahfouz, N. Rowe, E. Elkhouly, J. Turnmire, A.E. Fathy, Ultra wideband 3-D tracking of multiple tags for indoor positioning in medical applications requiring milimeter accuracy. IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS 2012), Santa Clara, CA, 57–60 (15–18 Jan 2012)Google Scholar
  23. 23.
    L. Jiang, L.N. Hoe, L.L. Loon, Integrated UWB and GPS location sensing system in hospital environment, The 5th IEEE conference on industrial electronics and applications (ICIEA 2010). Taichung, 286–289 (15–17 June 2010)Google Scholar
  24. 24.
    M.R. Mahfouz, M.J. Kuhn, Y. Wang, J. Turnmire, A.E. Fathy, Towards sub-millimeter accuracy in UWB positioning for indoor medical environments. IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS 2011), Phoenix, AZ, 83–86 (16–19 Jan 2011)Google Scholar
  25. 25.
    S.-K. Yong, P. Xia, A. Valdes-Garcia, 60 GHz Technology for Gbps WLAN and WPAN: From Theory to Practice. (Wiley, 2010)Google Scholar
  26. 26.
  27. 27.
    High Rate 60 GHz PHY, MAC and PALs, Standard ECMA-387, ser. 2nd Ed. ECMA, http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-387.pdf. Accessed 1 July 2010.
  28. 28.
  29. 29.
    T. Janevski, 5G mobile phone concept. Consumer Communications and Networking Conference, 2009. CCNC 2009. 6th IEEE, 1, 2, (10–13 Jan 2009). doi:10.1109/CCNC.2009.4784727Google Scholar
  30. 30.
    A. Gohil, H. Modi, S.K. Patel, 5G technology of mobile communication: a survey. Intelligent Systems and Signal Processing (ISSP), 2013 International Conference on 288, 292, (1–2 Mar 2013). doi:10.1109/ISSP.2013.6526920Google Scholar
  31. 31.
  32. 32.
    T.S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G.N. Wong, J.K. Schulz, M. Samimi, F. Gutierrez, Millimeter wave mobile communications for 5G cellular: it will work! Access IEEE 1, 335, 349 (2013). doi:10.1109/ACCESS.2013.2260813Google Scholar
  33. 33.
    http://nyuwireless.comMillimeter wave mobile communications for
  34. 34.
  35. 35.
    N. Chahat, M. Zhadobov, L.L. Coq, S.I. Alekseev, R. Sauleau, Characterization of the interactions between a 60-GHz antenna and the human body in an off-body scenario. Antennas and Propagation, IEEE Transactions on 60(12), 5958, 5965 (Dec 2012). doi:10.1109/TAP.2012.2211326Google Scholar
  36. 36.
    G. Valerio, N. Chahat, M. Zhadobov, R. Sauleau, Theoretical and experimental characterization of on-body propagation at 60 GHz. Antennas and Propagation (EuCAP), 2013 7th European Conference on (8–12 Apr 2013), 583, 585Google Scholar
  37. 37.
  38. 38.
    D. Cassioli et al., A successful VISION: video-oriented UWB based intelligent ubiquitous sensing. IEEE Consumer Communications and Networking Conference, (CCNC’2011), 963–964, (Las Vegas, NV, Jan 2011)Google Scholar
  39. 39.
    S. Piersanti, L.A. Annoni, D. Cassioli, Millimeter waves channel measurements and path loss models , Communications (ICC) , 2012 IEEE International Conference on (10–15 June 2012), 4552, 4556. doi:10.1109/ICC.2012.6363950Google Scholar
  40. 40.
    D. Cassioli, 60 GHz UWB channel measurement and model. Ultra-Wideband (ICUWB), 2012 IEEE International Conference on (17–20 Sept 2012), 145, 149. doi:10.1109/ICUWB.2012.6340429Google Scholar
  41. 41.
    D. Cassioli, L.A. Annoni, S. Piersanti, Characterization of path loss and delay spread of 60 GHz UWB channels vs. frequency. Communications (ICC), 2013 IEEE International Conference on 3746–3750Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Information Engineering, Computer Science and MathematicsUniversity of L’AquilaL’AquilaItaly

Personalised recommendations