Resistance Training Guidelines for Active Females Throughout the Lifespan: Children, Adolescences, Adult Women, and the Aging Woman

  • Maria Fernandez-del-Valle
  • Tyrel S. McCravens


Due to recent changes in physical activity practices, strength training, or resistance training, has become an area of focus in the research of determining the overall health of an individual. As individuals age, disorders relating to both bone and muscle begin to cause a decline in health and functional activity. Bone disorders, such as osteoporosis and osteopenia, have been linked to muscle disorders like sarcopenia (a loss of skeletal muscle mass). While these disorders do affect males, females tend to show higher incidences of these diseases. Current research suggests that resistance training can help to delay the effects of these diseases. Resistance training implemented in the early stages of life, such as childhood and adolescence, has been shown to cause increases in both bone growth, specifically bone mass and bone mineral density, and skeletal muscle mass. Resistance training can help maintain current levels of fitness in adults and improve activities of daily living in the elderly. In order to receive maximum benefits from resistance training, guidelines spanning the entire lifespan needed to be developed. The resistance training guidelines cover everything from basic supervision needs to intensity, duration, and frequency of the program. The guidelines include specific directions to increase hypertrophy, power, strength, and endurance. So, resistance training, which was once thought to cause injury in some, is now seen as a way to increase health and even reduce the chance of injury when done properly.


Resistance training Children Adolescences Hypertrophy Sarcopenia 


  1. 1.
    Garber C, Blissmer B, Deschenes M, et al. ACSM position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):1334.PubMedCrossRefGoogle Scholar
  2. 2.
    Rodriguez NR, DiMarco NM, Langley S. Position of the American dietetic association, dietitians of Canada, and the American college of sports medicine: nutrition and athletic performance. J Am Diet Assoc. 2009;109(3):509–27.PubMedCrossRefGoogle Scholar
  3. 3.
    Nelson ME, Rejeski WJ, Blair SN, et al. Physical activity and public health in older adults: recommendation from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc. 2007;39(8):1435.PubMedCrossRefGoogle Scholar
  4. 4.
    Donnelly J, Blair S, Jakicic J, Manore M, Rankin J, Smith B. American College of Sports Medicine position stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med Sci Sports Exerc. 2009;41(2):459.PubMedCrossRefGoogle Scholar
  5. 5.
    Tous FJ. Entrenamiento de la fuerza en los deportes de equipo. Apuntes del Máster Profesional en Alto Rendimiento en Deportes de Equipo. Barcelona (Spain): Byomedic-Mastercede, Fundación FC Barcelona; 2003.Google Scholar
  6. 6.
    Tous-Fajardo J. Nuevas tendencias en fuerza y musculación. Barcelona: Ergo; 1999.Google Scholar
  7. 7.
    Verkhoshansky YV, Siff MC. Supertraining. 6th ed. Rome, Italy: Verkhoshansky; 2009.Google Scholar
  8. 8.
    ACSM. ACSM position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2009;41(3):687–708.CrossRefGoogle Scholar
  9. 9.
    Naclerio AF. Entrenamiento Deportivo: fundamentos y aplicaciones en diferentes deportes. 1ªth ed. Madrid: Editorial Médica Panamericana; 2010.Google Scholar
  10. 10.
    Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol. 2012;8(8):457–65.PubMedCrossRefGoogle Scholar
  11. 11.
    Pedersen BK, Febbraio MA. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev. 2008;88(4):1379–406.PubMedCrossRefGoogle Scholar
  12. 12.
    Pedersen B. The anti-inflammatory effect of exercise: its role in diabetes and cardiovascular disease control. Essays Biochem. 2006;42:105–17.PubMedCrossRefGoogle Scholar
  13. 13.
    Wolfe RR. The underappreciated role of muscle in health and disease. Am J Clin Nutr. 2006;84(3):475–82.PubMedCrossRefGoogle Scholar
  14. 14.
    Zurlo F, Larson K, Bogardus C, Ravussin E. Skeletal muscle metabolism is a major determinant of resting energy expenditure. J Clin Invest. 1990;86(5):1423.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Powers SK, Howley ET. Exercise physiology. 8th ed. New York, NY: McGraw-Hill Higher Education; 2011.Google Scholar
  16. 16.
    Pereira A, Izquierdo M, Silva AJ, Costa AM, González-Badillo JJ, Marques MC. Muscle performance and functional capacity retention in older women after high-speed power training cessation. Exp Gerontol. 2012;47(8):620–4.PubMedCrossRefGoogle Scholar
  17. 17.
    Bagur CC. Ejercicio físico y masa ósea (I). Evolución ontogénica de la masa ósea e influencia de la actividad física sobre el hueso en las diferentes etapas de la vida. Apunts Medicina de l'Esport. 2007;42:40–6.CrossRefGoogle Scholar
  18. 18.
    Behm DG, Faigenbaum AD, Falk B, Klentrou P. Canadian Society for Exercise Physiology position paper: resistance training in children and adolescents. Appl Physiol Nutr Metab. 2008;33(3):547–61.PubMedCrossRefGoogle Scholar
  19. 19.
    Janssen I, Baumgartner RN, Ross R, Rosenberg IH, Roubenoff R. Skeletal muscle cutpoints associated with elevated physical disability risk in older men and women. Am J Epidemiol. 2004;159(4):413–21.PubMedCrossRefGoogle Scholar
  20. 20.
    NHLBI NHLaBI. Assessing your weight and health risk.
  21. 21.
    Devlin K. Do you believe in fairies, unicorns, or the BMI? 2009. Accessed May, 2012.
  22. 22.
    Cowin SC, Sadegh AM, Luo G. An evolutionary Wolff’s law for trabecular architecture. J Biomech Eng. 1992;114(1):129.PubMedCrossRefGoogle Scholar
  23. 23.
    Guyton AC, Hall JE. Textbook of medical physiology. 11th ed. Philadelphia, PA: Elsevier Saunders; 2006.Google Scholar
  24. 24.
    Schoenau E, Fricke O. Mechanical influences on bone development in children. Eur J Endocrinol. 2008;159 Suppl 1:S27–31.PubMedCrossRefGoogle Scholar
  25. 25.
    Bailey DA, McKay HA, Mirwald RL, Crocker PR, Faulkner RA. A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the university of Saskatchewan bone mineral accrual study. J Bone Miner Res. 1999;14(10):1672–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Lang TF. The bone-muscle relationship in men and women. J Osteoporos. 2011;2011:702735.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Riggs BL, Melton III LJ, Robb RA, et al. Population based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res. 2004;19(12):1945–54.CrossRefPubMedGoogle Scholar
  28. 28.
    Haywood K, Getchell N. Life span motor development. 5th ed. Illinois: Thomas-Shore; 2009.Google Scholar
  29. 29.
    Duppe H, Gardsell P, Johnell O, Nilsson BE, Ringsberg K. Bone mineral density, muscle strength and physical activity. A population-based study of 332 subjects aged 15–42 years. Acta Orthop Scand. 1997;68(2):97–103.PubMedCrossRefGoogle Scholar
  30. 30.
    Cooper C, Cawley M, Bhalla A, et al. Childhood growth, physical activity, and peak bone mass in women. J Bone Miner Res. 1995;10(6):940–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Malina RM, Bouchard C, Bar-Or O. Growth, maturation, and physical activity. Champaign, IL: Human Kinetics; 2004.Google Scholar
  32. 32.
    Evans WJ, Lexell J. Human aging, muscle mass, and fiber type composition. J Gerontol A. 1995;50(Special Issue):11.CrossRefGoogle Scholar
  33. 33.
    Roth S, Ferrell R, Hurley B. Strength training for the prevention and treatment of sarcopenia. J Nutr Health Aging. 2000;4(3):143.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Tremblay MSTMS, Colley RCCRC, Saunders TJSTJ, Healy GNHGN, Owen NON. Physiological and health implications of a sedentary lifestyle. Appl Physiol Nutr Metab. 2010;35(6):725–40.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Biddle SJ, Pearson N, Ross GM, Braithwaite R. Tracking of sedentary behaviours of young people: a systematic review. Prev Med. 2010;51(5):345–51.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Janz KF, Dawson JD, Mahoney LT. Tracking physical fitness and physical activity from childhood to adolescence: the muscatine study. Med Sci Sports Exerc. 2000;32(7):1250–7.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Austad SN. Why women live longer than men: sex differences in longevity. Gend Med. 2006;3(2):79–92.PubMedCrossRefGoogle Scholar
  38. 38.
    Chawla J. Stepwise approach to myopathy in systemic disease. Front Neurol. 2011;2:49.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Walsh RJ, Amato AA. Toxic myopathies. Neurol Clin. 2005;23(2):397.PubMedCrossRefGoogle Scholar
  40. 40.
    Guis S, Mattéi JP, Lioté F. Drug-induced and toxic myopathies. Best Pract Res Clin Rheumatol. 2003;17(6):877–907.PubMedCrossRefGoogle Scholar
  41. 41.
    Cooper C, Dere W, Evans W, et al. Frailty and sarcopenia: definitions and outcome parameters. Osteoporos Int. 2012;23(7):1839–48.PubMedCrossRefGoogle Scholar
  42. 42.
    Morley JE. Sarcopenia: diagnosis and treatment. J Nutr Health Aging. 2008;12(7):452–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on definition and diagnosis Report of the European Working Group on sarcopenia in older people. Age Ageing. 2010;39(4):412–23.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Abellan van Kan G. Epidemiology and consequences of sarcopenia. J Nutr Health Aging. 2009;13(8):708–12.PubMedCrossRefGoogle Scholar
  45. 45.
    von Haehling S, Morley JE, Anker SD. From muscle wasting to sarcopenia and myopenia: update 2012. J Cachex Sarcopenia Muscle. 2012;3(4):213–7.CrossRefGoogle Scholar
  46. 46.
    Morais J, Chevalier S, Gougeon R. Protein turnover and requirements in the healthy and frail elderly. J Nutr Health Aging. 2006;10(4):272.PubMedGoogle Scholar
  47. 47.
    Paddon-Jones D, Short KR, Campbell WW, Volpi E, Wolfe RR. Role of dietary protein in the sarcopenia of aging. Am J Clin Nutr. 2008;87(5):1562S–6S.PubMedCrossRefGoogle Scholar
  48. 48.
    Visser M, Simonsick EM, Colbert LH, et al. Type and intensity of activity and risk of mobility limitation: the mediating role of muscle parameters. J Am Geriatr Soc. 2005;53(5):762–70.PubMedCrossRefGoogle Scholar
  49. 49.
    D'Antona G, Pellegrino MA, Adami R, et al. The effect of ageing and immobilization on structure and function of human skeletal muscle fibres. J Physiol. 2003;552(2):499–511.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Pette D. Activity-dependent adaptive responses of skeletal muscle fibers. In: Mooren FC, Volker K, editors. Molecular and cellular exercise physiology. Champagne, IL: Human Kinetics; 2005. p. 263–74.Google Scholar
  51. 51.
    Hortobagyi T, Dempsey L, Fraser D, et al. Changes in muscle strength, muscle fibre size and myofibrillar gene expression after immobilization and retraining in humans. J Physiol. 2004;524(1):293–304.CrossRefGoogle Scholar
  52. 52.
    Wroblewski AP, Amati F, Smiley MA, Goodpaster B, Wright V. Chronic exercise preserves lean muscle mass in masters athletes. Phys Sportsmed. 2011;39(3):172–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Hamrick M, McNeil P, Patterson S. Role of muscle-derived growth factors in bone formation. J Musculoskelet Neuronal Interact. 2010;10(1):64–70.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Kanis J, Burlet N, Cooper C, et al. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int. 2008;19(4):399–428.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Walsh MC, Hunter GR, Livingstone MB. Sarcopenia in premenopausal and postmenopausal women with osteopenia, osteoporosis and normal bone mineral density. Osteoporos Int. 2006;17(1):61–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Looker AC, Melton LJ, Harris TB, Borrud LG, Shepherd JA. Prevalence and trends in low femur bone density among older US adults: NHANES 2005–2006 compared with NHANES III. J Bone Miner Res. 2009;25(1):64–71.PubMedCentralCrossRefGoogle Scholar
  57. 57.
    Looker AC, Johnston CC, Wahner HW, et al. Prevalence of low femoral bone density in older US women from NHANES III. J Bone Miner Res. 2009;10(5):796–802.CrossRefGoogle Scholar
  58. 58.
    Gillette-Guyonnet S, Nourhashemi F, Lauque S, Grandjean H, Vellas B. Body composition and osteoporosis in elderly women. Gerontology. 2000;46(4):189–93.PubMedCrossRefGoogle Scholar
  59. 59.
    Douchi T, Yamamoto S, Oki T, Maruta K, Kuwahata R, Nagata Y. Relationship between body fat distribution and bone mineral density in premenopausal Japanese women. Obstet Gynecol. 2000;95(5):722–5.PubMedGoogle Scholar
  60. 60.
    Blain H, Vuillemin A, Teissier A, Hanesse B, Guillemin F, Jeandel C. Influence of muscle strength and body weight and composition on regional bone mineral density in healthy women aged 60 years and over. Gerontology. 2001;47(4):207–12.PubMedCrossRefGoogle Scholar
  61. 61.
    Bakker I, Twisk JWR, Van Mechelen W, Kemper HCG. Fat-free body mass is the most important body composition determinant of 10-yr longitudinal development of lumbar bone in adult men and women. J Clin Endocrinol Metab. 2003;88(6):2607–13.PubMedCrossRefGoogle Scholar
  62. 62.
    Grinspoon S, Thomas E, Pitts S, et al. Prevalence and predictive factors for regional osteopenia in women with anorexia nervosa. Ann Intern Med. 2000;133(10):790–4.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Paccou J, Zeboulon N, Combescure C, Gossec L, Cortet B. The prevalence of osteoporosis, osteopenia, and fractures among adults with cystic fibrosis: a systematic literature review with meta-analysis. Calcif Tissue Int. 2010;86(1):1–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Bonkovsky HL, Hawkins M, Steinberg K, et al. Prevalence and prediction of osteopenia in chronic liver disease. Hepatology. 2005;12(2):273–80.CrossRefGoogle Scholar
  65. 65.
    Marcén R, Caballero C, Uriol O, et al. Prevalence of osteoporosis, osteopenia, and vertebral fractures in long-term renal transplant recipients. Paper presented at transplantation proceedings 2007; 2007.PubMedCrossRefGoogle Scholar
  66. 66.
    Kemink S, Hermus A, Swinkels L, Lutterman J, Smals A. Osteopenia in insulin-dependent diabetes mellitus; prevalence and aspects of pathophysiology. J Endocrinol Invest. 2000;23(5):295.PubMedCrossRefGoogle Scholar
  67. 67.
    Camacho PM, Dayal AS, Diaz JL, et al. Prevalence of secondary causes of bone loss among breast cancer patients with osteopenia and osteoporosis. J Clin Oncol. 2008;26(33):5380–5.PubMedCrossRefGoogle Scholar
  68. 68.
    Komi PV. Strength and power in sport, vol. 3. Oxford: Wiley-Blackwell; 2003.CrossRefGoogle Scholar
  69. 69.
    Frank C. Ligament injuries: pathophysiology and healing. J Am Acad Orthop Surg. 1996;4(2):74–83.PubMedCrossRefGoogle Scholar
  70. 70.
    Faigenbaum AD, Kraemer WJ, Blimkie CJ, et al. Youth resistance training: updated position statement paper from the national strength and conditioning association. J Strength Cond Res. 2009;23(5 Suppl):S60–79.CrossRefPubMedGoogle Scholar
  71. 71.
    Fukuda DH, Stout JR, Kendall KL, Smith AE, Wray ME, Hetrick RP. The effects of tournament preparation on anthropometric and sport-specific performance measures in youth judo athletes. J Strength Condition Res. 2013;27(2):331–9.CrossRefGoogle Scholar
  72. 72.
    Michailidis Y, Fatouros IG, Primpa E, et al. Plyometrics’ trainability in pre-adolescent soccer athletes. J Strength Condition Res. 2013;27(1):38–49.CrossRefGoogle Scholar
  73. 73.
    Tournis S, Michopoulou E, Fatouros I, et al. Effect of rhythmic gymnastics on volumetric bone mineral density and bone geometry in premenarcheal female athletes and controls. J Clin Endocrinol Metab. 2010;95(6):2755–62.CrossRefPubMedGoogle Scholar
  74. 74.
    Ward K, Roberts S, Adams J, Mughal M. Bone geometry and density in the skeleton of pre-pubertal gymnasts and school children. Bone. 2005;36(6):1012–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Zanker C, Gannon L, Cooke C, Gee K, Oldroyd B, Truscott J. Differences in bone density, body composition, physical activity, and diet between child gymnasts and untrained children 7–8 years of age. J Bone Miner Res. 2003;18(6):1043–50.PubMedCrossRefGoogle Scholar
  76. 76.
    Ratel S. High-intensity and resistance training and elite young athletes. Med Sport Sci. 2011;56:84–96.PubMedCrossRefGoogle Scholar
  77. 77.
    Faigenbaum AD, Milliken LA, Westcott WL. Maximal strength testing in healthy children. J Strength Cond Res. 2003;17(1):162–6.PubMedPubMedCentralGoogle Scholar
  78. 78.
    McManus A, Armstrong N. Physiology of elite young female athletes. Med Sport Sci. 2011;56:23–46.PubMedCrossRefGoogle Scholar
  79. 79.
    Payne VG, Isaacs LD. Human motor development: a lifespan approach. 8th. New York, NY: McGraw-Hill Humanities/Social Sciences/Languages; 2011.Google Scholar
  80. 80.
    Pescatello LS, Franklin BA, Fagard R, Farquhar WB, Kelley GA, Ray CA. American College of Sports Medicine position stand. Exercise and hypertension. Med Sci Sports Exerc. 2004;36(3):533–53.PubMedCrossRefGoogle Scholar
  81. 81.
    Faigenbaum AD, McFarland JE, Schwerdtman JA, Ratamess NA, Kang J, Hoffman JR. Dynamic warm-up protocols, with and without a weighted vest, and fitness performance in high school female athletes. J Athl Train. 2006;41(4):357–63.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Roubenoff R, Castaneda C. Sarcopenia—understanding the dynamics of aging muscle. JAMA. 2001;286(10):1230–1.PubMedCrossRefGoogle Scholar
  83. 83.
    Hasten DL, Pak-Loduca J, Obert KA, Yarasheski KE. Resistance exercise acutely increases MHC and mixed muscle protein synthesis rates in 78–84 and 23–32 yr olds. Am J Physiol Endocrinol Metab. 2000;278(4):E620–6.PubMedCrossRefGoogle Scholar
  84. 84.
    Yarasheski KE, Zachwieja JJ, Bier DM. Acute effects of resistance exercise on muscle protein synthesis rate in young and elderly men and women. Am J Physiol Endocrinol Metab. 1993;265(2):E210–4.CrossRefGoogle Scholar
  85. 85.
    Yarasheski KE, Pak-Loduca J, Hasten DL, Obert KA, Brown MB, Sinacore DR. Resistance exercise training increases mixed muscle protein synthesis rate in frail women and men≥ 76 yr old. Am J Physiol Endocrinol Metab. 1999;277(1):E118–25.CrossRefGoogle Scholar
  86. 86.
    Roth SM, Ivey FM, Martel GF, et al. Muscle size responses to strength training in young and older men and women. J Am Geriatr Soc. 2002;49(11):1428–33.CrossRefGoogle Scholar
  87. 87.
    Faulkner JA, Davis CS, Mendias CL, Brooks SV. The aging of elite male athletes: age-related changes in performance and skeletal muscle structure and function. Clin J Sport Med. 2008;18(6):501–7.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Newman AB, Kupelian V, Visser M, et al. Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. J Gerontol A. 2006;61(1):72–7.CrossRefGoogle Scholar
  89. 89.
    Trappe S, Gallagher P, Harber M, Carrithers J, Fluckey J, Trappe T. Single muscle fibre contractile properties in young and old men and women. J Physiol. 2004;552(1):47–58.CrossRefGoogle Scholar
  90. 90.
    McCrory JL, Salacinski AJ, Hunt SE, Greenspan SL. Thigh muscle strength in senior athletes and healthy controls. J Strength Condition Res. 2009;23(9):2430.CrossRefGoogle Scholar
  91. 91.
    Louis J, Hausswirth C, Bieuzen F, Brisswalter J. Muscle strength and metabolism in master athletes. Int J Sports Med. 2009;30(10):754–9.PubMedCrossRefGoogle Scholar
  92. 92.
    ACSM. ACSM’s guidelines for exercise testing and prescription. 8th ed. Baltimore, MD: Lippincott; 2010.Google Scholar
  93. 93.
    Miller MG, Cheatham CC, Patel ND. Resistance training for adolescents. Pediatr Clin North Am. 2010;57(3):671.PubMedCrossRefGoogle Scholar
  94. 94.
    Corbin CB, LeMasurier G, Lambdin D, Greiner M. Fitness for life: elementary school guide for wellness coordinators. Champaign, IL: Human Kinetics; 2010.,+LeMasurier+G,+Lambdin+D,+Greiner+M.&ots=1Cs_OHs1vG&sig=YZS-lAmrX4ARXDMb9FSMMzoiwJk&redir_esc=y#v=onepage&q&f=false.
  95. 95.
    CDC. Centers for Disease Control and Prevention. Making physical activity a part of a child’s life; 2011.
  96. 96.
    McCambridge T, Stricker P. Strength training by children and adolescents. Pediatrics. 2008;121(4):835–40.PubMedCrossRefGoogle Scholar
  97. 97.
    Myer GD, Wall EJ. Resistance training in the young athlete. Operat Tech Sport Med. 2006;14(3):218–30.CrossRefGoogle Scholar
  98. 98.
    Corbin CB, Lindsey R, Welk G. Concepts of physical fitness: active lifestyles for wellness. 16th ed. Boston: McGraw-Hill; 2011.Google Scholar
  99. 99.
    Kraemer WJ, Fleck SJ. Strength training for young athletes. Champaign, IL: Human Kinetics; 2005.Google Scholar
  100. 100.
    Stone MH, Plisk SS, Stone ME, Schilling BK, O’Bryant HS, Pierce KC. Athletic performance development: volume load-1 set vs. multiple sets, training velocity and training variation. Strength Condition J. 1998;20(6):22–31.CrossRefGoogle Scholar
  101. 101.
    Verstegen M, Williams P. Core performance. Emmaus, PA: Rodale; 2004.Google Scholar
  102. 102.
    Faigenbaum AD, McFarland JE, Johnson L, et al. Preliminary evaluation of an after-school resistance training program for improving physical fitness in middle school-age boys. Percept Mot Skills. 2007;104(2):407–15.PubMedCrossRefGoogle Scholar
  103. 103.
    Faigenbaum A, Milliken L, Moulton L, Westcott W. Early muscular fitness adaptations in children in response to two different resistance training regimens. Pediatr Exerc Sci. 2005;17(3):237.CrossRefGoogle Scholar
  104. 104.
    Kraemer WJ, Newton RU. Training for muscular power. Phys Med Rehabil Clin N Am. 2000;11(2):341–68. vii.PubMedCrossRefGoogle Scholar
  105. 105.
    Peterson MD, Rhea MR, Alvar BA. Maximizing strength development in athletes: a meta-analysis to determine the dose–response relationship. J Strength Cond Res. 2004;18(2):377–82.PubMedGoogle Scholar
  106. 106.
    Kraemer WJ, Ratamess NA. Fundamentals of resistance training: progression and exercise prescription. Med Sci Sport Exerc. 2004;36(4):674–88.CrossRefGoogle Scholar
  107. 107.
    Fleck SJ, Kraemer WJ. Designing resistance training programs. Champaign, IL: Human Kinetics; 2004.Google Scholar
  108. 108.
    Stone MH, Potteiger JA, Pierce KC, et al. Comparison of the effects of three different weight-training programs on the one repetition maximum squat. J Strength Condition Res. 2000;14(3):332–7.Google Scholar
  109. 109.
    Rhea MR, Alderman BL. A meta-analysis of periodized versus nonperiodized strength and power training programs. Res Q Exerc Sport. 2004;75(4):413–22.PubMedCrossRefGoogle Scholar
  110. 110.
    ACSM. Exercise and physical activity guidelines for older adults. Med Sci Sports Exerc. 2009;41(7):1510–30.CrossRefGoogle Scholar
  111. 111.
    Porter MM. Resistance training recommendations for older adults. Topic Geriatr Rehabil. 2000;15(3):60–9.CrossRefGoogle Scholar
  112. 112.
    Pollock ML, Gaesser GA, Butcher JD, et al. ACSM position stand: the recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness, and flexibility in healthy adults. Med Sci Sports Exerc. 1998;30(6):975.Google Scholar
  113. 113.
    Faigenbaum AD, Schram J. Can resistance training reduce injuries in youth sports? Strength Condition J. 2004;26(3):16–21.CrossRefGoogle Scholar
  114. 114.
    Faigenbaum AD, Myer GD. Resistance training among young athletes: safety, efficacy and injury prevention effects. Br J Sports Med. 2010;44(1):56–63.PubMedCrossRefGoogle Scholar
  115. 115.
    Corbin CB. The fitness for life physical activity pyramid for children. Champaign, IL: Human Kinetics; 2003.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Health, Exercise, and Sport SciencesTexas Tech UniversityLubbockUSA
  2. 2.Department of Health, Exercise, and Sport SciencesTexas Tech UniversityLubbockUSA

Personalised recommendations