Virtual Surgery in Congenital Heart Disease

  • Thomas Sangild Sørensen
  • Jesper Mosegaard
  • Stefan Kislinskiy
  • Gerald F. Greil


Teaching, diagnosing, and planning of therapy in patients with complex structural cardiovascular heart disease require profound understanding of the three-dimensional (3D) nature of cardiovascular structures in these patients. To obtain such understanding, modern imaging modalities provide high-resolution two-dimensional (2D), three-dimensional (3D), and sometimes even time-resolved 3D imaging of the cardiovascular anatomy of the chest. When 3D structures need to be understood based on 2D images, a 3D model is a very helpful tool to visualize and to understand the often complex 3D structures. In combination with the availability of virtual models of congenital heart disease (CHD), techniques for computer-based simulation of cardiac interventions have enabled early clinical exploration of the emerging concept of virtual surgery. This chapter serves as an introduction to virtual surgery for patient-specific preoperative planning and teaching of cardiovascular anatomy and interventions for clinicians. The chapter is mainly based on the discussion of a few examples. An overview of the underlying imaging and data-processing techniques is provided.


  1. 1.
    Sorensen TS, Pedersen EM, Hansen OK, Sorensen K. Visualization of morphological details in congenitally malformed hearts: virtual three-dimensional reconstruction from magnetic resonance imaging. Cardiol Young. 2003;13:451–60.PubMedGoogle Scholar
  2. 2.
    Sorensen TS, Greil GF, Hansen OK, Mosegaard J. Surgical simulation–a new tool to evaluate surgical incisions in congenital heart disease? Interact Cardiovasc Thorac Surg. 2006;5:536–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Sorensen TS, Beerbaum P, Mosegaard J, Rasmusson A, Schaeffter T, Austin C, Razavi R, Greil GF. Virtual cardiotomy based on 3-D MRI for preoperative planning in congenital heart disease. Pediatr Radiol. 2008;38:1314–22.PubMedCrossRefGoogle Scholar
  4. 4.
    Sorensen TS, Korperich H, Greil GF, Eichhorn J, Barth P, Meyer H, Pedersen EM, Beerbaum P. Operator-independent isotropic three-dimensional magnetic resonance imaging for morphology in congenital heart disease: a validation study. Circulation. 2004;110:163–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Hussain T, Lossnitzer D, Bellsham-Revell H, Valverde I, Beerbaum P, Razavi R, Bell AJ, Schaeffter T, Botnar RM, Uribe SA, Greil GF. Three-dimensional dual-phase whole-heart mr imaging: clinical implications for congenital heart disease. Radiology. 2012;263:547–54.PubMedCrossRefGoogle Scholar
  6. 6.
    Uribe S, Tejos C, Razavi R, Schaeffter T. New respiratory gating technique for whole heart cine imaging: integration of a navigator slice in steady state free precession sequences. J Magn Reson Imaging. 2011;34:211–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Greil GF, Powell AJ, Gildein HP, Geva T. Gadolinium-enhanced three-dimensional magnetic resonance angiography of pulmonary and systemic venous anomalies. J Am Coll Cardiol. 2002;39:335–41.PubMedCrossRefGoogle Scholar
  8. 8.
    Valsangiacomo ER, Levasseur S, McCrindle BW, MacDonald C, Smallhorn JF, Yoo SJ. Contrast-enhanced mr angiography of pulmonary venous abnormalities in children. Pediatr Radiol. 2003;33:92–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Sorensen TS, Beerbaum P, Korperich H, Pedersen EM. Three-dimensional, isotropic MRI: a unified approach to quantification and visualization in congenital heart disease. Int J Cardiovasc Imaging. 2005;21:283–92.PubMedCrossRefGoogle Scholar
  10. 10.
    Tangcharoen T, Bell A, Hegde S, Hussain T, Beerbaum P, Schaeffter T, Razavi R, Botnar RM, Greil GF. Detection of coronary artery anomalies in infants and young children with congenital heart disease by using MR imaging. Radiology. 2011;259:240–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Makowski MR, Wiethoff AJ, Uribe S, Parish V, Botnar RM, Bell A, Kiesewetter C, Beerbaum P, Jansen CH, Razavi R, Schaeffter T, Greil GF. Congenital heart disease: cardiovascular MR imaging by using an intravascular blood pool contrast agent. Radiology. 2011;260:680–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Kozerke S, Tsao J, Razavi R, Boesiger P. Accelerating cardiac cine 3D imaging using k-t blast. Magn Reson Med. 2004;52:19–26.PubMedCrossRefGoogle Scholar
  13. 13.
    Mosegaard J, Herborg P, Sorensen TS. A GPU accelerated spring mass system for surgical simulation. Stud Health Technol Inform. 2005;111:342–8.PubMedGoogle Scholar
  14. 14.
    Sorensen TS, Mosegaard J, Greil GF, Miller S, Seeger A, Hansen OK, Sieverding L. Images in cardiovascular medicine. Virtual cardiotomy for preoperative planning. Circulation. 2007;115:e312.PubMedCrossRefGoogle Scholar
  15. 15.
    Li H, Leow WK, Chiu IS. Predictive simulation of bidirectional glenn shunt using a hybrid blood vessel model. Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv. 2009;12:266–74.Google Scholar
  16. 16.
    Kislinskiy S, Golembiovský T, Duriez C, Riesenkampff E, Kuehne T, Meinzer HP, Heimann T. Simulation of congenital heart defect corrective surgeries using thin shell elements. In: Wittek A, Miller K, Nielsen PMF, editors. Computational biomechanics for medicine – models, algorithms and implementation. New York, Heidelberg, Dordrecht, London: Springer; 2013:63–74.CrossRefGoogle Scholar
  17. 17.
    Greil GF, Wolf I, Kuettner A, Fenchel M, Miller S, Martirosian P, Schick F, Oppitz M, Meinzer HP, Sieverding L. Stereolithographic reproduction of complex cardiac morphology based on high spatial resolution imaging. Clin Res Cardiol. 2007;96:1 76–85.Google Scholar
  18. 18.
    Greil GF, Kuettner A, Flohr T, Grasruck M, Sieverding L, Meinzer HP, Wolf I. High-resolution reconstruction of a waxed heart specimen with flat panel volume computed tomography and rapid prototyping. J Comput Assist Tomogr. 2007;31:444–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Thomas Sangild Sørensen
    • 1
  • Jesper Mosegaard
    • 2
  • Stefan Kislinskiy
    • 3
  • Gerald F. Greil
    • 4
  1. 1.Department of Clinical Medicine and Department of Computer ScienceAarhus UniversityAarhusDenmark
  2. 2.Computer Graphics LabThe Alexandra Institute Ltd.Århus N.Denmark
  3. 3.Division of Medical and Biological InformaticsGerman Cancer Research Center (DKFZ)HeidelbergGermany
  4. 4.Division of Imaging Sciences and Biomedical Engineering, Department of Pediatric CardioloyGuy’s and St. Thomas’ Hospital/Evelina Children’s Hospital, The Rayne Institute, King’s College LondonLondonUK

Personalised recommendations