Superorganismic Behavior via Human Computation

  • Theodore P. Pavlic
  • Stephen C. Pratt


In a future world with pervasive Human Computation (HC), there may be profound effects on how humanity functions at multiple levels from individual behaviors to species/wide changes in evolutionary development. What would such an HC/shaped human society look like? This hypothetical society would be the result of successful adaptations that provide both increased benefit to the high/level facilitators of large-scale computations as well as sufficient incentives to individuals to participate in those computations.


Virgin Queen Paper Wasp Eusocial Insect Work Caste Software Team 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Thanks to Bert Hölldobler for connecting us to this interesting speculative project. The writing of this chapter was supported by the National Science Foundation (award 1012029). Images in this chapter that were not already in the public domain were used either under the explicit permission of the image owner or according to a CC BY 2.0 (Creative Commons 2013a), CC BY 2.5 (Creative Commons 2013b), or CC BY 3.0 (Creative Commons 2013c) license.


  1., Inc. (2005) Amazon mechanial turk.
  2. Anderson C, Theraulaz G, Deneubourg JL (2002) Self-assemblages in insect societies. Insectes Sociaux 49(2):99–110. doi: 10.1007/s00040-002-8286-y Google Scholar
  3. André JB, Peeters C, Doums C (2001) Serial polygyny and colony genetic structure in the monogynous queenless ant Diacamma cyaneiventre. Behav Ecol Sociobiol 50(1):72–80. doi: 10.1007/s002650100330 Google Scholar
  4. Baratte S, Cobb M, Peeters C (2006) Reproductive conflicts and mutilation in queenless Diacamma ants. Anim Behav 72(2):305–311. doi: 10.1016/j.anbehav.2005.10.025 Google Scholar
  5. Beach CB, McMurry FM (eds) (1914) The new student’s reference work for teachers, students and families. FE Compton, ChicagoGoogle Scholar
  6. Beckers R, Deneubourg JL, Goss S, Pasteels JM (1990) Collective decision making through food recruitment. Insectes Sociaux 37(3):258–267. doi: 10.1007/BF02224053 Google Scholar
  7. Beckers R, Deneubourg JL, Goss S (1992a) Trail laying behaviour during food recruitment in the ant Lasius niger (L.). Insectes Sociaux 39(1):59–72. doi: 10.1007/BF01240531 Google Scholar
  8. Beckers R, Deneubourg JL, Goss S (1992b) Trails and U-turns in the selection of a path by the ant Lasius niger. J Theor Biol 159(4):397–415. doi: 10.1016/S0022-5193(05)80686-1 Google Scholar
  9. Berman S, Lindsey Q, Sakar MS, Kumar V, Pratt SC (2010) Study of group food retrieval by ants as a model for multi-robot collective transport strategies. In: Proceedings of robotics: science and systems, ZaragozaGoogle Scholar
  10. Berman S, Lindsey Q, Sakar MS, Kumar V, Pratt SC (2011) Experimental study and modeling of group retrieval in ants as an approach to collective transport in swarm robotic systems. Proc IEEE 99(9):1470–1481. doi: 10.1109/JPROC.2011.2111450 Google Scholar
  11. Beshers SN, Fewell JH (2001) Models of division of labor in social insects. Annu Rev Entomol 46:413–440. doi: 10.1146/annurev.ento.46.1.413 Google Scholar
  12. Bhadra A, Gadagkar R (2008) We know that the wasps ’know’: cryptic successors to the queen in Ropalidia marginata. Biol Lett 4(6):634–637. doi: 10.1098/rsbl.2008.0455 Google Scholar
  13. Bhadraa A, Iyera PL, Sumanaa A, Deshpandea SA, Ghosha S, Gadagkar R (2007) How do workers of the primitively eusocial wasp Ropalidia marginata detect the presence of their queens? J Theor Biol 246(3):574–582. doi: 10.1016/j.jtbi.2007.01.007 Google Scholar
  14. Birattari M, Di Caro G, Dorigo M (2002) Toward the formal foundation of ant programming. In: Dorigo M, Di Caro G, Sampels M (eds) Proceedings of the third international workshop on ant algorithms (ANTS 2002), Brussels, pp 39–72. doi: 10.1007/3-540-45724-0_16
  15. Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems. Oxford University Press, OxfordzbMATHGoogle Scholar
  16. Bonabeau E, Theraulaz G, Deneubourg JL (1998) Group and mass recruitment in ant colonies: the influence of contact rates. J Theor Biol 195(2):157–166. doi: 10.1006/jtbi.1998.0789 Google Scholar
  17. Brady SG (2003) Evolution of the army ant syndrome: the origin and long-term evolutionary stasis of a complex of behavioral and reproductive adaptations. Proc Natl Acad Sci USA 100(11):6575–6579. doi: 10.1073/pnas.1137809100 Google Scholar
  18. Burd M (2000) Foraging behaviour of Atta cephalotes (leaf-cutting ants): an examination of two predictions for load selection. Anim Behav 60(6):781–788. doi: 10.1006/anbe.2000.1537 Google Scholar
  19. Buschinger A (2011) Queen polymorphism in an Australian ant, Monomorium cf. rubriceps Mayr, 1876 (Hymenoptera: Formicidae). Myrmecol News 15:63–66Google Scholar
  20. Calderone NW, Page RE (1996) Temporal polyethism and behavioural canalization in the honey bee, Apis mellifera. Anim Behav 51(3):631–643. doi: 10.1006/anbe.1996.0068 Google Scholar
  21. Camazine S, Deneubourg JL, Franks NR, Sneyd J, Theraulaz G, Bonabeau E (2001) Self-organization in biological systems. Princeton University Press, PrincetonGoogle Scholar
  22. Cargel RA, Rinderer TE (2004) Unusual queen cell construction and destruction in Apis mellifera from far-eastern Russia. J Apic Res 43(4):188–190Google Scholar
  23. Creative Commons (2013a) Attribution 2.0 Generic (CC BY 2.0).
  24. Creative Commons (2013b) Attribution 2.5 Generic (CC BY 2.5).
  25. Creative Commons (2013c) Attribution 3.0 Unported (CC BY 3.0).
  26. Cuvillier-Hot V, Gadagkar R, Peeters C, Cobb M (2002) Regulation of reproduction in a queenless ant: aggression, pheromones and reduction in conflict. Proc R Soc B 269(1497):1471–2954. doi: 10.1098/rspb.2002.1991 Google Scholar
  27. Delsuc F (2003) Army ants trapped by their evolutionary history. PLoS Biol 1(2):e37. doi: 10.1371/journal.pbio.0000037 Google Scholar
  28. de Biseau JC, Deneubourg JL, Pasteels JM (1991) Collective flexibility during mass recruitment in the ant Myrmica sabuleti (Hymenoptera: Formicidae). Psyche 98(4):323–336. doi: 10.1155/1991/38402 Google Scholar
  29. Denny AJ, Franks NR, Powell S, Edwards KJ (2004) Exceptionally high levels of multiple mating in an army ant. Naturwissenschaften 91(8):396–399. doi: 10.1007/s00114-004-0546-4 Google Scholar
  30. Deshpande SA, Sumana A, Surbeck M, Gadagkar R (2006) Wasp who would be queen: a comparative study of two primitively eusocial species. Curr Sci 91(3):332–336Google Scholar
  31. Detrain C, Deneubourg JL (2008) Collective decision-making and foraging patterns in ants and honeybees, vol 35. Academic, Amsterdam/Boston, pp 123–173. doi: 10.1016/S0065-2806(08)00002-7 Google Scholar
  32. Dornhaus A, Holley JA, Pook VG, Worswick G, Franks NR (2008) Why do not all workers work? colony size and workload during emigrations in the ant Temnothorax albipennis. Behav Ecol Sociobiol 63(1):43–51. doi: 10.1007/s00265-008-0634-0 Google Scholar
  33. Dorigo M, Birattari M, Stützle T (2006) Ant colony optimization: artificial ants as a computational intelligence technique. IEEE Comput Intell Mag 1(4):28–39. doi: 10.1109/MCI.2006.329691 Google Scholar
  34. Dorigo M, Di Caro G, Gambardella LM (1999) Ant algorithms for discrete optimization. Artif Life 5(2):137–172. doi: 10.1162/106454699568728 Google Scholar
  35. Dorigo M, Maniezzo V, Colorni A (1996) Ant System: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern Part B: Cybern 26(1):29–41. doi: 10.1109/3477.484436 Google Scholar
  36. Dussutour A, Beekman M, Nicolis SC, Meyer B (2009) Noise improves collective decision-making by ants in dynamic environments. Proc R Soc B 276(1677):4353–4361. doi: 10.1098/rspb.2009.1235 Google Scholar
  37. Dussutour A, Fourcassié V, Helbing D, Deneubourg JL (2004) Optimal traffic organization in ants under crowded conditions. Nature 428:70–73. doi: 10.1038/nature02345 Google Scholar
  38. Farji-Brener AG, Amador-Vargas S, Chinchilla F, Escobar S, Cabrera S, Herrera MI, Sandoval C (2010) Information transfer in head-on encounters between leaf-cutting ant workers: food, trail condition or orientation cues? Anim Behav 79(2):343–349. doi: 10.1016/j.anbehav.2009.11.009 zbMATHGoogle Scholar
  39. Feigenbaum J, Shenker S (2002) Distributed algorithmic mechanism design: recent results and future directions. In: Proceedings of the 6th international workshop on discrete algorithms and methods for mobile computing and communication, Atlanta, pp 1–13. doi: 10.1145/570810.570812
  40. Fersch R, Buschinger A, Heinze J (2000) Queen polymorphism in the australian ant Monomorium sp.10. Insectes Sociaux 47(3):280–284. doi: 10.1007/PL00001715 Google Scholar
  41. Fewell JH (2003) Social insect networks. Science 301(5641):1867–1870. doi: 10.1126/science.1088945 Google Scholar
  42. Fourcassié V, Dussutour A, Deneubourg JL (2010) Ant traffic rules. J Exp Biol 213(14):2357–2363. doi: 10.1242/jeb.031237 Google Scholar
  43. Franks NR, Gomez N, Goss S, Deneubourg JL (1991) The blind leading the blind in army ant raid patterns: testing a model of self-organization (Hymenoptera: Formicidae). J Insect Behav 4(4):583–607. doi: 10.1007/BF01048072 Google Scholar
  44. Franks NR, Richardson T (2006) Teaching in tandem-running ants. Nature 439:153. doi:10.1038/439153aGoogle Scholar
  45. Franks NR, Tofts C (1994) Foraging for work: how tasks allocate workers. Anim Behav 48(2):470–472. doi: 10.1006/anbe.1994.1261 Google Scholar
  46. Fujisawa R, Dobata S, Kubota D, Imamura H, Matsuno F (2008) Dependency by concentration of pheromone trail for multiple robots. In: Dorigo M, Birattari M, Blum C, Clerc M, Stüzle T, Winfield AFT (eds) Proceedings of the 6th international conference on ant colony optimization and swarm intelligence (ANTS 2008), BrusselsGoogle Scholar
  47. Gadau J, Gertsch PJ, Heinze J, Pamilo P, Hölldobler B (1998) Oligogyny by unrelated queens in the carpenter ant, Camponotus ligniperdus. Behav Ecol Sociobiol 44(1):23–33. doi: 10.1007/s002650050511 Google Scholar
  48. Ganeshaiah KN, Veena T (1991) Topology of the foraging trails of Leptogenys processionalis: why are they branched? Behav Ecol Sociobiol 29(4):263–270. doi: 10.1007/BF00163983 Google Scholar
  49. Ghose T (2013) Human takeover by machines may be closer than we think.
  50. Google (2009) reCAPTCHA.
  51. Gordon DM (1996) The organization of work in social insect colonies. Nature 380:121–124. doi: 10.1038/380121a0 Google Scholar
  52. Gordon DM (2010) Ant encounters: interaction networks and colony behavior. Princeton University Press, PrincetonGoogle Scholar
  53. Gordon DM, Holmes S, Nacu S (2008) The short-term regulation of foraging in harvester ants. Behav Ecol 19(1):217–222. doi: 10.1093/beheco/arm125 Google Scholar
  54. Gordon DM, Paul RE, Thorpe K (1993) What is the function of encounter patterns in ant colonies? Anim Behav 45(6):1083–1100. doi: 10.1006/anbe.1993.1134 Google Scholar
  55. Gotoh A, Sameshima S, Tsuji K, Matsumoto T, Miura T (2005) Apoptotic wing degeneration and formation of an altruism-regulating glandular appendage (gemma) in the ponerine ant Diacamma sp. from japan (Hymenoptera, Formicidae, Ponerinae). Dev Genes Evol 215(2):69–77. doi: 10.1007/s00427-004n-0456-7n Google Scholar
  56. Gotwald WH Jr (1995) Army ants: the biology of social predation. Cornell University Press, IthacaGoogle Scholar
  57. Haight KL (2006) Defensiveness of the fire ant, Solenopsis invicta, is increased during colony rafting. Insectes Sociaux 53(1):32–36. doi: 10.1007/s00040-005n-0832-y Google Scholar
  58. Hart AG, Ratnieks FLW (2001) Task partitioning, division of labour and nest compartmentalisation collectively isolate hazardous waste in the leafcutting ant atta cephalotes. Behav Ecol Sociobiol 49(5):387–392. doi: 10.1007/s002650000312 Google Scholar
  59. Heinze J (1998) Intercastes, intermorphs, and ergatoid queens: who is who in ant reproduction? Insectes Sociaux 45(2):113–124. doi: 10.1007/s000400050073 Google Scholar
  60. Heinze J, Keller L (2000) Alternative reproductive strategies: a queen perspective in ants. Trends Ecol Evol 15(12):508–512. doi: 10.1016/S0169-5347(00)01995-9 Google Scholar
  61. Hölldobler B, Carlin NF (1985) Colony founding, queen dominance and oligogyny in the australian meat ant Iridomyrmex purpureus. Behav Ecol Sociobiol 18(1):45–58. doi: 10.1007/BF00299237 Google Scholar
  62. Hölldobler B, Carlin NF (1989) Colony founding, queen control, and worker reproduction in the ant Aphaenogaster (=Novomessor) cockerelli. Psyche 96(3–4):131–151. doi: 10.1155/1989/74135 Google Scholar
  63. Hölldobler B, Möglich M, Maschwitz U (1974) Communication by tandem running in the ant Camponotus sericeus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 90(2):105–127. doi: 10.1007/BF00694481 Google Scholar
  64. Hölldobler B, Stanton RC, Markl H (1978) Recruitment and food-retrieving behavior in Novomessor (Formicidae: Hymenoptera): I. chemical signals. Behav Ecol Sociobiol 4(2):163–181. doi: 10.1007/BF00354978 Google Scholar
  65. Hölldobler B, Wilson EO (1977) The number of queens: an important trait in ant evolution. Naturwissenschaften 64(1):8–15. doi: 10.1007/BF00439886 Google Scholar
  66. Hölldobler B, Wilson EO (1990) The Ants. Harvard University Press, CambridgeGoogle Scholar
  67. Hölldobler B, Wilson EO (2009) The Superorganism: the beauty, elegance, and strangeness of insect societies. WW Norton, New YorkGoogle Scholar
  68. Inoue T, Sakagami SF, Salmah S, Yamane S (1984) The process of colony multiplication in the Sumatran stingless bee Trigona laeviceps. Biotropica 16(2):100–111Google Scholar
  69. Jenkins C (2013) [APP] Swarm! on Glass: The attention economy, glamified.
  70. Krebs RA, Rissing SW (1991) Preference for large foundress associations in the desert ant Messor pergandei. Anim Behav 41(2):361–363. doi: 10.1016/S0003-3472(05)80487-7n Google Scholar
  71. Kronauer DJC, Johnson RA, Boomsma JJ (2007) The evolution of multiple mating in army ants. Evolution 61(2):413–422. doi: 10.1111/j.1558-5646n.2007.00040.x Google Scholar
  72. Kronauer DJC, Schöning C, d’Ettorre P, Boomsma JJ (2010) Colony fusion and worker reproduction after queen loss in army ants. Proc R Soc B 277(1682):755–763. doi: 10.1098/rspb.2009.1591
  73. Kumar GP, Buffin A, Pavlic TP, Pratt SC, Berman SM (2013) A stochastic hybrid system model of collective transport in the desert ant Aphaenogaster cockerelli. In: Proceedings of the 16th ACM international conference on hybrid systems: computation and control, PhiladelphiaGoogle Scholar
  74. Kurzweil R (1999) The age of spiritial machines: when computers exceed human intelligence. Viking, New YorkGoogle Scholar
  75. Kurzweil R (2005) The singularity is near: when humans transcend biology. Viking, New YorkGoogle Scholar
  76. Lamon B, Topoff H (1981) Avoiding predation by army ants: defensive behaviours of three ant species of the genus Camponotus. Anim Behav 29(4):1070–1081. doi: 10.1016/S0003-3472(81)80060-7 Google Scholar
  77. Liebig J, Hölldobler B, Peeters C (1998) Are ant workers capable of colony foundation? Naturwissenschaften 85(3):133–135. doi: 10.1007/s001140050470 Google Scholar
  78. Livnat A, Pippenger N (2006) An optimal brain can be composed of conflicting agents. Proc Natl Acad Sci U S A 103(9):3198–3202. doi: 10.1073/pnas.0510932103 Google Scholar
  79. Loeliger J, McCullough M (2012) Version control with git: powerful tools and techniques for collaborative software development, 2nd edn. O’Reilly, CambridgeGoogle Scholar
  80. Mas-Colell A, Whinston MD, Green JR (1995) Microeconomic theory. Oxford University Press, New YorkzbMATHGoogle Scholar
  81. Matthey L, Berman S, Kumar V (2009) Stochastic strategies for a swarm robotic assembly system. In: Proceedings of the 2009 IEEE international conference on robotics and automation, Kobe, pp 1953–1958Google Scholar
  82. Mlot NJ, Tovey CA, Hu DL (2011) Fire ants self-assemble into waterproof rafts to survive floods. Proc Natl Acad Sci U S A 108(19):7669–7673. doi: 10.1073/pnas.1016658108 Google Scholar
  83. Moffett MW (1988) Foraging dynamics in the group-hunting myrmicine ant, Pheidologeton diversus. J Insect Behav 1(3):309–331. doi: 10.1007/BF01054528 Google Scholar
  84. Möglich M, Maschwitz U, Hölldobler B (1974) Tandem calling: a new kind of signal in ant communication. Science 186(4168):1046–1047. doi: 10.1126/science.186.4168.1046 Google Scholar
  85. Molet M, Baalen MV, Peeters C (2008) Shift in colonial reproductive strategy associated with a tropical-temperate gradient in Rhytidoponera ants. Am Nat 172(1):75–87. doi: 10.1086/588079 Google Scholar
  86. Monnin T, Ratnieks FLW, Jones GR, Beard R (2002) Pretender punishment induced by chemical signalling in a queenless ant. Nature 419(6902):61–65, doi: 10.1038/nature00932 Google Scholar
  87. Nicolis SC, Deneubourg JL (1999) Emerging patterns and food recruitment in ants: an analytical study. J Theor Biol 198:575–592. doi: 10.1006/jtbi.1999.0934 Google Scholar
  88. Nonacs P, Reeve HK (1993) Opportunistic adoption of orphaned nests in paper wasps as an alternative reproductive strategy. Behav Process 30(1):47–59. doi: 10.1016/0376-6357(93)90011-F Google Scholar
  89. Nonacs P, Reeve HK (1995) The ecology of cooperation in wasps: causes and consequences of alternative reproductive decisions. Ecology 76(3):953–967. doi: Google Scholar
  90. Osborne MJ, Rubinstein A (1994) A course in game theory. MIT, CambridgezbMATHGoogle Scholar
  91. Palmer KA, Oldroyd BP (2000) Evolution of multiple mating in the genus Apis. Apidologie 31(2):235–248. doi: 10.1051/apido:2000119 Google Scholar
  92. Pardi L (1948) Dominance order in Polistes wasps. Physiol Zool 21(1):1–13Google Scholar
  93. Partridge LW, Partridge KA, Franks NR (1997) Field survey of a monogynous leptothoracine ant (Hymenoptera, Formicidae): evidence of seasonal polydomy? Insectes Sociaux 44(2):75–83. doi: 10.1007/s000400050031 Google Scholar
  94. Peeters C (1991a) Ergatoid queens and intercastes in ants: two distinct adult forms which look morphologically intermediate between workers and winged queens. Insectes Sociaux 38(1): 1–15. doi: 10.1007/BF01242708 Google Scholar
  95. Peeters C (1991b) The occurence of sexual reproduction among ant workers. Biol J Linn Soc 44(2):141–152. doi: 10.1111/j.1095-8312.1991.tb00612.x MathSciNetGoogle Scholar
  96. Peeters C, Hölldobler B, Moffett M, Musthak Ali TM (1994) “wall-papering” and elaborate nest architecture in the ponerine ant Harpegnathos saltator. Insectes Sociaux 41(2):211–218. doi: 10.1007/BF01240479 Google Scholar
  97. Peeters C, Hölldobler B (1995) Reproductive cooperation between queens and their mated workers: the complex life history of an ant with a valuable nest. Proc Natl Acad Sci U S A 92(24): 10,977–10,979Google Scholar
  98. Peeters C, Ito F (2001) Colony dispersal and the evolution of queen morphology in social Hymenoptera. Annu Rev Entomol 46:601–630. doi: 10.1146/annurev.ento.46.1.601 Google Scholar
  99. Peeters C, Liebig J, Hölldobler B (2000) Sexual reproduction by both queens and workers in the ponerine ant Harpegnathos saltator. Insectes Sociaux 47(4):325–332. doi: 10.1007/PL00001724 Google Scholar
  100. Pinter-Wollman N, Wollman R, Guetz A, Holmes S, Gordon DM (2011) The effect of individual variation on the structure and function of interaction networks in harvester ants. J R Soc Interface 8(64):1562–1573. doi: 10.1098/rsif.2011.0059 Google Scholar
  101. Pollock GB, Rissing SW (1985) Mating season and colony foundation of the seed-harvester ant, Veromessor pergandei. Psyche 92:125–134. doi: 10.1155/1985/87410 Google Scholar
  102. Pratt SC (2004) Collective control of the timing and type of comb construction by honey bees (Apis mellifera). Apidologie 35:193–205. doi: 10.1051/apido:2004005 Google Scholar
  103. Pratt SC (2005a) Behavioral mechanisms of collective nest-site choice by the ant Temnothorax curvispinosus. Insectes Sociaux 52(4):383–392. doi: 10.1007/s00040-005-0823-z Google Scholar
  104. Pratt SC (2005b) Quorum sensing by encounter rates in the ant Temnothorax albipennis. Behav Ecol 16(2):488–496. doi: 10.1093/beheco/ari020 Google Scholar
  105. Pratt SC, Mallon EB, Sumpter DJ, Franks NR (2002) Quorum sensing, recruitment, and collective decision-making during colony emigration by the ant Leptothorax albipennis. Behav Ecol Sociobiol 52(2):117–127. doi: 10.1007/s00265-002-0487-x Google Scholar
  106. Reeve HK, Gamboa GJ (1983) Colony activity integration in primitively eusocial wasps: the role of the queen (Polistes fuscatus, Hymenoptera: Vespidae). Behav Ecol Sociobiol 13(1):63–74. doi: 10.1007/BF00295077 Google Scholar
  107. Reeve HK, Gamboa GJ (1987) Queen regulation of worker foraging in paper wasps: a social feedback control system (Polistes fuscatus, Hymenoptera: Vespidae). Behaviour 102(3/4): 147–167Google Scholar
  108. Reeve HK, Starks PT, Peters JM, Nonacs P (2000) Genetic support for the evolutionary theory of reproductive transactions in social wasps. Proc R Soc B 267(1438):75–79. doi: 10.1098/rspb.2000.0969 Google Scholar
  109. Richardson TO, Christensen K, Franks NR, Jensen HJ, Sendova-Franks AB (2011) Ants in a labyrinth: a statistical mechanics approach to the division of labour. PLoS ONE 6(4):e18416. doi: 10.1371/journal.pone.0018416 Google Scholar
  110. Rissing SW, Pollock GB, Higgins MR, Hagen RH, Smith DR (1989) Foraging specialization without relatedness or dominance among co-founding ant queens. Nature 338(6214):420–422. doi: 10.1038/338420a0 Google Scholar
  111. Rissing SW, Johnson RA, Martin JW (2000) Colony founding behavior of some desert ants: geographic variation in metrosis. Psyche 103(1–2):95–101. doi: 10.1155/2000/20135 Google Scholar
  112. Robson SK, Beshers SN (1997) Division of labour and ’foraging for work’: simulating reality versus the reality of simulations. Anim Behav 53(1):214–218. doi: 10.1006/anbe.1996.0290 Google Scholar
  113. Sasaki T, Pratt SC (2011) Emergence of group rationality from irrational individuals. Behav Ecol 22(2):276–281. doi: 10.1093/beheco/arq198 Google Scholar
  114. Sasaki T, Pratt SC (2012) Groups have a larger cognitive capacity than individuals. Curr Biol 22(19):R827–R829. doi: 10.1016/j.cub.2012.07.058 Google Scholar
  115. Schmolke A (2009) Benefits of dispersed central-place foraging: an individual-based model of a polydomous ant colony. Am Nat 173(6):772–778. doi: 10.1086/598493 Google Scholar
  116. Schneirla TC (1944) A unique case of circular milling in ants, considered in relation to trail following and the general problem of orientation. Am Mus Novit 1253:1–26Google Scholar
  117. Schneirla TC (1949) Army-ant life and behavior under dry-season conditions. 3. the course of reproduction and colony behavior. Bull Am Mus Nat Hist 94(1):1–82Google Scholar
  118. Schneirla TC (1971) Army ants: a study in social organization. WH Freeman, San FranciscoGoogle Scholar
  119. Schneirla TC, Brown RZ (1950) Army-ant life and behavior under dry-season conditions. 4. further investigation of cyclic processes in behavioral and reproductive functions. Bull Am Mus Nat Hist 50(5):263–354Google Scholar
  120. Schofield RMS, Emmett KD, Niedbala JC, Nesson MH (2011) Leaf-cutter ants with worn mandibles cut half as fast, spend twice the energy, and tend to carry instead of cut. Behav Ecol Sociobiol 65(5):969–982. doi: 10.1007/s00265-010-1098-6 Google Scholar
  121. Seeley TD (1995) The wisdom of the hive: the social physiology of honey bee colonies. Harvard University, CambridgeGoogle Scholar
  122. Seeley TD (2010) Honeybee democracy. Princeton University Press, PrincetonGoogle Scholar
  123. Shaffer Z, Sasaki T, Pratt SC (2013) Linear recruitment leads to allocation and flexibility in collective foraging by ants. Anim Behav (in press)Google Scholar
  124. Shakarad M, Gadagkar R (1995) Colony founding in the primitively eusocial wasp, Ropalidia marginata (Hymenoptera: Vespidae). Ecol Entomol 20(3):273–282. doi: 10.1111/j.1365-2311.1995.tb00457.x Google Scholar
  125. Sharpe T, Webb B (1996) Simulated and situated models of chemical trail following in ants. In: Pfeifer R, Blumberg B, Meyer JA, Wilson SW (eds) Proceedings of the fifth international conference on simulation of adaptive behavior (SAB96), North FalmouthGoogle Scholar
  126. Slonczewski J (2013b) Mitochondrial singularity.
  127. Smith AA, Haight KL (2008) Army ants as research and collection tools. J Insect Sci 8:71. doi: 10.1673/031.008.7101 Google Scholar
  128. Smith AA, Hölldobler B, Liebig J (2011) Reclaiming the crown: queen to worker conflict over reproduction in Aphaenogaster cockerelli. Naturwissenschaften 98(3):237–240. doi: 10.1007/s00114-011-0761-8 Google Scholar
  129. St Laurent AM (2004) Understanding open source and free software licensing. O’Reilly, Beijing/SebastopolGoogle Scholar
  130. Sumpter DJT, Beekman M (2003) From nonlinearity to optimality: pheromone trail foraging by ants. Anim Behav 66(2):273–280. doi: 10.1006/anbe.2003.2224 Google Scholar
  131. Surowieckie J (2004) The wisdom of crowds: why the many are smarter than the few and how collective wisdom shapes business, economies, societies and nations. Doubleday, New YorkGoogle Scholar
  132. Svennebring J, Koenig S (2003) Trail-laying robots for robust terrain coverage. In: Proceedings of the 2003 IEEE International conference on robotics and automation (ICRA ’03), Taipei, vol 1, pp 75–82. doi: 10.1109/ROBOT.2003.1241576
  133. Szulc J (2011) Galeria :: Cyfrowo :: Macro :: Mrówki.
  134. Tarpy DR, Nielsen R, Nielsen DI (2004) A scientific note on the revised estimates of effective paternity frequency in Apis. Insectes Sociaux 51(2):203–204. doi: 10.1007/s00040-004-0734-4 Google Scholar
  135. Tofts C, Franks NR (1992) Doing the right thing: ants, honeybees and naked mole-rats. Trends Ecol Evol 7(10):346–349. doi: 10.1016/0169-5347(92)90128-X zbMATHGoogle Scholar
  136. Tripet F, Nonacs P (2004) Foraging for work and age-based polyethism: the roles of age and previous experience on task choice in ants. Ethology 110(11):863–877. doi: 10.1111/j. 1439-0310.2004.01023.x Google Scholar
  137. Tschinkel WR (2006) The fire ants. Belknap, CambridgeGoogle Scholar
  138. Visscher PK (2007) Group decision making in nest-site selection among social insects. Annu Rev Entomol 52:255–275. doi: 10.1146/annurev.ento.51.110104.151025 Google Scholar
  139. Walker SI, Cisneros L, Davies PCW (2012) Evolutionary transitions and top-down causation. In: Proceedings of the thirteenth international conference on the simulation and synthesis of living systems (Artificial Life 13), vol 13, East Lansing, pp 283–290. doi: 10.7551/978-0-262-31050-5-ch038
  140. Walker SI, Davies PCW (2013) The algorithmic origins of life. J R Soc Interface 10(79):20120869. doi: 10.1098/rsif.2012.0869 Google Scholar
  141. Waters JS, Fewell JH (2012) Information processing in social insect networks. PLoS ONE 7(7):e40337. doi: 10.1371/journal.pone.0040337 Google Scholar
  142. West-Eberhard MJ (1969) The social biology of polistine wasps. Miscellaneous publications, vol 140. Museum of Zoology, University of Michigan, Ann ArborGoogle Scholar
  143. Wheeler WM (1918) A study of some ant larvæ, with a consideration of the origin and meaning of the social habit among insects. Proc Am Philos Soc 57(4):293–343zbMATHGoogle Scholar
  144. Wheeler DE (1986) Developmental and physiological determinants of caste in social Hymenoptera: evolutionary implications. Am Nat 128(1):13–34Google Scholar
  145. Wilson EO (1971) The insect societies. Belknap Press, CambridgeGoogle Scholar
  146. Yang R, Fang F, Jiang AX, Rajagopal K, Tambe M, Maheswaran RT (2012) Designing better strategies against human adversaries in network security games. In: Proceedings of the 11th international conference on autonomous agents and multiagent systems (AAMAS ’12), Valencia, vol 3, pp 1299–1300Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.School of Life SciencesArizona State UniversityTempeUSA

Personalised recommendations