Robotics as a Tool for Training and Assessment of Surgical Skill

  • Marcia K. O’Malley
  • Ozkan Celik
  • Joel C. Huegel
  • Michael D. Byrne
  • Jean Bismuth
  • Brian J. Dunkin
  • Alvin C. Goh
  • Brian J. Miles
Chapter

Abstract

Technological advances have enabled new paradigms for skill training using virtual reality and robotics. We present three recent research advances in the field of virtual reality and human–robot interaction (HRI) for training. First, skill assessment in these systems is discussed, with an emphasis on the derivation of meaningful and objective quantitative performance metrics from motion data acquired through sensors on the robotic devices. We show how such quantitative measures derived for the robotic stroke rehabilitation domain correlate strongly with clinical measures of motor impairment. For virtual reality-based task training, we present task analysis and motion-based performance metrics for a manual control task. Lastly, we describe specific challenges in the surgical domain, with a focus on the development of tasks for skills assessment in surgical robotics.

Keywords

Skill training Robotics Virtual reality Human–robot interaction Surgical Skill Rehabilitation robotics Assessment Performance measures Manual Tasks Simulators 

References

  1. 1.
    Kozak JJ, Hancock PA, Arthur EJ, Chrysler ST (1993) Transfer of training from virtual reality. Ergonomics 36(1):777–784CrossRefGoogle Scholar
  2. 2.
    Lintern G (1991) An informational perspective on skill transfer in human-machine systems. Hum Factors 33(3):251–266Google Scholar
  3. 3.
    Lintern G, Roscoe SN (1980) Visual cue augmentation in contact flight simulation. In: Roscoe SN (ed) Aviation psychology. Iowa State University Press, AmesGoogle Scholar
  4. 4.
    Gamberini L (2000) Virtual reality as a new research tool for the study of human memory. Cyberpsychol Behav 3(3):337–342CrossRefGoogle Scholar
  5. 5.
    O’Malley MK, Gupta A, Gen M, Li Y (2006) Shared control in haptic systems for performance enhancement and training. ASME J Dyn Syst Meas Control 128(1):75–85CrossRefGoogle Scholar
  6. 6.
    Li Y, Huegel JC, Patoglu V, O’Malley, MK (2009) Progressive shared control for training in virtual environments. EuroHaptics conference, 2009 and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. World Haptics, Third Joint, pp 332–337. doi: 10.1109/WHC.Google Scholar
  7. 7.
    Li Y, Patoglu V, O’Malley MK (2009) Negative efficacy of fixed gain error reducing shared control for training in virtual environments. ACM Trans Appl Percept 6(1):3-1–3-21Google Scholar
  8. 8.
    Huegel JC, O’Malley MK (2009) Visual versus haptic progressive guidance for training in a virtual dynamic task. EuroHaptics conference, 2009 and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. World Haptics, Third Joint, pp 399–400. doi: 10.1109/WHC.2009.4810914Google Scholar
  9. 9.
    Waller D, Hunt E, Knapp D (1998) The transfer of spatial knowledge in virtual environment training. Presence Teleoper Virtual Environ 7(2):129–143CrossRefGoogle Scholar
  10. 10.
    Rose FD, Attree EA, Brooks BM, Parslow DM, Penn PR, Ambihaipahan N (2000) Training in virtual environments: transfer to real world tasks and equivalence to real task training. Ergonomics 43(4):494–511CrossRefGoogle Scholar
  11. 11.
    Tendick F, Downes M, Goktekin T, Cavusoglu MC, Feygin D, Wu X, Eyal R, Hegarty M, Way LW (2000) A virtual environment tested for training laparoscopic surgical skills. Presence Teleoper Virtual Environ 9(3):236–255CrossRefGoogle Scholar
  12. 12.
    Basdogan C, Ho C-H, Srinivasan MA (2001) Virtual environments for medical training: graphical and haptic simulation of laparoscopic common bile duct exploration. IEEE/ASME Trans Mechatronics 6(3):269–285CrossRefGoogle Scholar
  13. 13.
    Li Y, Patoglu V, O’Malley MK (2006) Shared control for training in virtual environments: learning through demonstration? In: Proceedings of EuroHaptics, pp 93–99. http://lsc.univ-evry.fr/∼eurohaptics/upload/cd/papers/f108.pdfGoogle Scholar
  14. 14.
    Morris D, Tan H, Barbagli F, Chang T, Salisbury K (2007) Haptic feedback enhances force skill learning. EuroHaptics Conference, and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. World Haptics 2007. Second Joint, pp 21–26. doi: 10.1109/WHC.2007.65Google Scholar
  15. 15.
    Huang FC, Gillespie RB, Kuo AD (2007) Visual and haptic feedback contribute to tuning and online control during object manipulation. J Mot Behav 39(3):179–193CrossRefGoogle Scholar
  16. 16.
    Israr A, Kapson H, Patoglu V, O’Malley MK (2009) Effects of magnitude and phase cues on human motor adaptation. EuroHaptics conference, 2009 and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. World Haptics. Third Joint, pp 344–349. doi: 10.1109/WHC.2009.4810870Google Scholar
  17. 17.
    Flash T, Hogan N (1985) The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci 5(7):1688–1703Google Scholar
  18. 18.
    Svinin M, Goncharenko I, Zhi-Wei L, Hosoe S (2006) Reaching movements in dynamic environments: how do we move flexible objects? IEEE Trans Robotics 22(4):724–739CrossRefGoogle Scholar
  19. 19.
    Celik O, O’Malley MK, Boake C, Levin H, Yozbatiran N, Reistetter T (2010) Normalized movement quality measures for therapeutic robots strongly correlate with clinical motor impairment measures. IEEE Trans Neural Syst Rehabil Eng 18(4):433–444CrossRefGoogle Scholar
  20. 20.
    Huegel J, Celik O, Israr A, O'Malley MK (2009) Expertise- based performance measures in a virtual training environment. Presence Teleoper Virtual Environ 18(6):449–467CrossRefGoogle Scholar
  21. 21.
    Cronenwett JL (2006) Vascular surgery training: is there enough case material? Semin Vasc Surg 19(4):187–190CrossRefGoogle Scholar
  22. 22.
    Schanzer A, Steppacher R, Eslami M, Arous E, Messina L, Belkin M (2009) Vascular surgery training trends from 2001–2007: a substantial increase in total procedure volume is driven by escalating endovascular procedure volume and stable open procedure volume. J Vasc Surg 49(5):1339–1344CrossRefGoogle Scholar
  23. 23.
    Bismuth J, Donovan MA, O’Malley MK, El Sayed HF, Naoum JJ, Peden EK, Davies MG, Lumsden AB (2010) Incorporating simulation in vascular surgery. J Vasc Surg 52(4): 1072–1080CrossRefGoogle Scholar
  24. 24.
    Lepor H (2009) Status of radical prostatectomy in 2009: is there medical evidence to justify the robotic approach? Rev Urol 11:61–70Google Scholar
  25. 25.
    Samadi D, Levinson A, Hakimi A, Shabsigh R, Benson MC (2007) From proficiency to expert, when does the learning curve for robotic-assisted prostatectomies plateau? The Columbia University experience. World J Urol 25(1):105–110CrossRefGoogle Scholar
  26. 26.
    Judkins TN, Oleynikov D, Stergiou N (2009) Objective evaluation of expert and novice performance during robotic surgical training tasks. Surg Endosc 23(3):590–597CrossRefGoogle Scholar
  27. 27.
    Narazaki K, Oleynikov D, Stergiou N (2007) Objective assessment of proficiency with bimanual inanimate tasks in robotic laparoscopy. J Laparoendosc Adv Surg Tech A 17(1): 47–52CrossRefGoogle Scholar

Copyright information

© Springer New York 2014

Authors and Affiliations

  • Marcia K. O’Malley
    • 1
  • Ozkan Celik
    • 2
  • Joel C. Huegel
    • 3
  • Michael D. Byrne
    • 4
  • Jean Bismuth
    • 5
  • Brian J. Dunkin
    • 5
  • Alvin C. Goh
    • 5
  • Brian J. Miles
    • 5
  1. 1.Department of Mechanical Engineering and Materials ScienceRice UniversityHoustonUSA
  2. 2.San Francisco, Colorado School of MinesGoldenUSA
  3. 3.Tecnologico de Monterrey-Campus GuadalajaraGuadalajaraMexico
  4. 4.Department of PsychologyRice UniversityHoustonUSA
  5. 5.Houston Methodist HospitalHoustonUSA

Personalised recommendations