Advertisement

Neocortical Simulation for Epilepsy Surgery Guidance: Localization and Intervention

  • William W. LyttonEmail author
  • Samuels A. Neymotin
  • Jason C. Wester
  • Diego Contreras
Chapter

Abstract

New surgical and localization techniques allow for precise and personalized evaluation and treatment of intractable epilepsies. These techniques include the use of subdural and depth electrodes for localization, and the potential use for cell-targeted stimulation using optogenetics as part of treatment. Computer modeling of seizures, also individualized to the patient, will be important in order to make full use of the potential of these new techniques. This is because epilepsy is a complex dynamical disease involving multiple scales across both time and space. These complex dynamics make prediction extremely difficult. Cause and effect are not cleanly separable, as multiple embedded causal loops allow for many scales of unintended consequence. We demonstrate here a small model of sensory neocortex which can be used to look at the effects of microablations or microstimulation. We show that ablations in this network can either prevent spread or prevent occurrence of the seizure. In this example, focal electrical stimulation was not able to terminate a seizure but selective stimulation of inhibitory cells, a future possibility through use of optogenetics, was efficacious.

Keywords

Epilepsy Neurosurgery Medial temporal lobe Computer simulation Neurodynamics Seizures Neocortex Pyramidal cells Optogenetics Electroencephalography Personalized medicine Microstimulation 

Notes

Acknowledgments

Research supported by NIH R01MH086638 and DARPA N66001-10-C-2008.

References

  1. 1.
    Crampin EJ, Halstead M, Hunter P, Nielsen P, Noble D, Smith N, Tawhai M (2004) Computational physiology and the physiome project. Exp Physiol 89:1–26CrossRefGoogle Scholar
  2. 2.
    Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, Srivas R, Palsson B (2007) Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Nat Acad Sci 104:1777–1782CrossRefGoogle Scholar
  3. 3.
    Dubitzky W (2006) Understanding the computational methodologies of systems biology. Brief Bioinform 7:315–317CrossRefGoogle Scholar
  4. 4.
    Clusmann H, Kral T, Gleissner U, Sassen R, Urbach H, Blümcke I, Bogucki J, Schramm J (2004) Analysis of different types of resection for pediatric patients with temporal lobe epilepsy. Neurosurgery 54:847–859CrossRefGoogle Scholar
  5. 5.
    Wyler AR, Hermann BP, Somes G (1995) Extent of medial temporal resection on outcome from anterior temporal lobectomy: a randomized prospective study. Neurosurgery 37:982–990CrossRefGoogle Scholar
  6. 6.
    Lesser RP, Crone NE, Webber WR (2010) Subdural electrodes. Clin Neurophysiol 121: 1376–1392CrossRefGoogle Scholar
  7. 7.
    Lesser RP, Crone NE, Webber WR (2011) Using subdural electrodes to assess the safety of resections. Epilepsy Behav 20:223–229CrossRefGoogle Scholar
  8. 8.
    Benifla M, Otsubo H, Ochi A, Snead OC, Rutka JT (2006) Multiple subpial transections in pediatric epilepsy: indications and outcomes. Childs Nerv Syst 22:992–998CrossRefGoogle Scholar
  9. 9.
    Morrell F, Whisler WW, Bleck TP (1989) Multiple subpial transection: a new approach to the surgical treatment of focal epilepsy. J Neurosurg 70:231–239CrossRefGoogle Scholar
  10. 10.
    Schramm J, Aliashkevich AF, Grunwald T (2002) Multiple subpial transections: outcome and complications in 20 patients who did not undergo resection. J Neurosurg 97:39–47CrossRefGoogle Scholar
  11. 11.
    Wyler AR (1997) Recent advances in epilepsy surgery: temporal lobectomy and multiple subpial transections. Neurosurgery 41:1294–1301CrossRefGoogle Scholar
  12. 12.
    Spencer SS, Schramm J, Wyler A, Connor M, Orbach D, Krauss G (2002) Multiple subpial transection for intractable partial epilepsy: an international meta-analysis. Epilepsia 43: 141–145CrossRefGoogle Scholar
  13. 13.
    Rutecki P (1990) Anatomical, physiological, and theoretical basis for the antiepileptic effect of vagus nerve stimulation. Epilepsia 31S2:S1–S6Google Scholar
  14. 14.
    Cohen-Gadol AA, Stoffman MR, Spencer DD (2003) Emerging surgical and radiotherapeutic techniques for treating epilepsy. Curr Opin Neurol 16:213–219CrossRefGoogle Scholar
  15. 15.
    Kossoff EH, Ritzl EK, Politsky JM, Murro AM, Smith JR, Duckrow RB, Spencer DD,  Bergey GK (2004) Effect of an external responsive neurostimulator on seizures and electrographic discharges during subdural electrode monitoring. Epilepsia 45:1560–1567CrossRefGoogle Scholar
  16. 16.
    Lesser RP, Kim SH, Beyderman L, Miglioretti DL, Webber WR, Bare M, Cysyk B, Krauss G, Gordon B (1999) Brief bursts of pulse stimulation terminate afterdischarges caused by cortical stimulation. Neurology 53:2073–2081CrossRefGoogle Scholar
  17. 17.
    Osorio I, Frei MG, Manly BF, Sunderam S, Bhavaraju NC, Wilkinson SB (2001) An introduction to contingent (closed-loop) brain electrical stimulation for seizure blockage, to ultra-short-term clinical trials, and to multidimensional statistical analysis of therapeutic efficacy. J Clin Neurophysiol 18:533–544CrossRefGoogle Scholar
  18. 18.
    Richardson KA, Schiff SJ, Gluckman BJ (2005) Control of traveling waves in the mammalian cortex. Phys Rev Lett 94:028103CrossRefGoogle Scholar
  19. 19.
    Motamedi GK, Salazar P, Smith EL, Lesser RP, Webber WR, Ortinski PI, Vicini S, Rogawski MA (2006) Elimination of epileptiform activity by cooling in rat hippocampal slice epilepsy models. Epilepsy Res 70:200–210CrossRefGoogle Scholar
  20. 20.
    Tonnesen J, Sorensen AT, Deisseroth K, Lundberg C, Kokaia M (2009) Optogenetic control of epileptiform activity. Proc Nat Acad Sci 106:12162–12167CrossRefGoogle Scholar
  21. 21.
    Milton JG (2010) Epilepsy as a dynamic disease: a tutorial of the past with an eye to the future. Epilepsy Behav 18:33–44CrossRefGoogle Scholar
  22. 22.
    Neymotin SA, Lee HY, Park EH, Fenton AA, Lytton WW (2011) Emergence of physiological oscillation frequencies in a computer model of neocortex. Frontiers Comput Neurosci 5:19CrossRefGoogle Scholar
  23. 23.
    Babloyantz A, Destexhe A (1986) Low-dimensional chaos in an instance of epilepsy. Proc Nat Acad Sci 83:3513–3517CrossRefGoogle Scholar
  24. 24.
    Buonomano DV (2009) Harnessing chaos in recurrent neural networks. Neuron 63:423–425CrossRefGoogle Scholar
  25. 25.
    TY LYL, Yorke JA (1975) Period three implies chaos. Am Math Mon 82:985–992Google Scholar
  26. 26.
    Polsky A, Mel BW, Schiller J (2004) Computational subunits in thin dendrites of pyramidal cells. Nat Neurosci 7:621–627CrossRefGoogle Scholar
  27. 27.
    Schulz R, Hoppe M, Boesebeck F, Gyimesi C, Pannek HW, Woermann FG, May T, Ebner A (2011) Analysis of reoperation in mesial temporal lobe epilepsy with hippocampal sclerosis. Neurosurgery 68:89–97CrossRefGoogle Scholar
  28. 28.
    Yogarajah M, Focke NK, Bonelli SB, Thompson P, Vollmar C, McEvoy AW, Alexander DC, Symms MR, Koepp MJ, Duncan JS (2010) The structural plasticity of white matter networks following anterior temporal lobe resection. Brain 133:2348–2364CrossRefGoogle Scholar
  29. 29.
    Carnevale NT, Hines ML (2006) The NEURON book. Cambridge University Press, New YorkCrossRefGoogle Scholar
  30. 30.
    Hines ML, Carnevale NT (2001) NEURON: a tool for neuroscientists. The Neuroscientist 7:123–135CrossRefGoogle Scholar
  31. 31.
    Lytton WW, Neymotin SA, Hines ML (2008) The virtual slice setup. J Neurosci Meth 171: 309–315CrossRefGoogle Scholar
  32. 32.
    Lytton WW, Omurtag A (2007) Tonic-clonic transitions in computer simulation. J Clin Neurophysiol 24:175–181CrossRefGoogle Scholar
  33. 33.
    Lytton WW, Stewart M (2005) A rule-based firing model for neural networks. Int J Bioelectromagnetism 7:47–50Google Scholar
  34. 34.
    Lytton WW, Stewart M (2006) Rule-based firing for network simulations. Neurocomputing 69(10–12):1160–1164CrossRefGoogle Scholar
  35. 35.
    Jahr CE, Stevens CF (1990) Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics. J Neurosci 10(9):3178–3182Google Scholar
  36. 36.
    Jahr CE, Stevens CF (1990) A quantitative description of NMDA receptor-channel kinetic behavior. J Neurosci 10(6):1830Google Scholar
  37. 37.
    Brown SP, Hestrin S (2009) Intracortical circuits of pyramidal neurons reflect their long-range axonal targets. Nature 457(7233):1133–1136CrossRefGoogle Scholar
  38. 38.
    Groh A, Meyer HS, Schmidt EF, Heintz N, Sakmann B, Krieger P (2010) Cell-type specific properties of pyramidal neurons in neocortex underlying a layout that is modifiable depending on the cortical area. Cereb Cortex 20(4):826–836CrossRefGoogle Scholar
  39. 39.
    Steriade M (2004) Neocortical cell classes are flexible entities. Nat Rev Neurosci 5(2):121–134CrossRefGoogle Scholar
  40. 40.
    Lytton WW, Hellman KM, Sutula TP (1996) Computer network model of mossy fiber sprouting in dentate gyrus. Epilepsia – AES Proc 37 S.5:117Google Scholar
  41. 41.
    Lytton WW, Hellman KM, Sutula TP (1998) Computer models of hippocampal circuit changes of the kindling model of epilepsy. Artif Intell Med 13:81–98CrossRefGoogle Scholar

Copyright information

© Springer New York 2014

Authors and Affiliations

  • William W. Lytton
    • 1
    Email author
  • Samuels A. Neymotin
    • 2
  • Jason C. Wester
    • 3
  • Diego Contreras
    • 3
  1. 1.SUNY Downstate, Kings County HospitalBrooklynUSA
  2. 2.SUNY DownstateBrooklynUSA
  3. 3.University of Pennsylvania Medical SchoolPhiladelphiaUSA

Personalised recommendations