The Role of Visual Analytics in Asthma Phenotyping and Biomarker Discovery

  • Suresh K. Bhavnani
  • Justin Drake
  • Rohit Divekar
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 795)


The exponential growth of biomedical data related to diseases such as asthma far exceeds our cognitive abilities to comprehend it for tasks such as biomarker discovery, pathway identification, and molecular-based phenotyping. This chapter discusses the cognitive and task-based reasons for why methods from visual analytics can help in analyzing such large and complex asthma data, and demonstrates how one such approach called network visualization and analysis can be used to reveal important translational insights related to asthma. The demonstration of the method helps to identify the strengths and limitations of network analysis, in addition to areas for future research that can enhance the use of networks to analyze vast and complex biomedical datasets related to diseases such as asthma.


Asthma Phenotypes Visual analytics Network analysis Visualization Bipartite networks Multivariate analysis Exploratory visual analysis Quantitative verification Emergent clusters Inference of biological pathways Molecular-based classification Phenotyping Biomarker discovery 


  1. Albert RK (2004) Boolean modeling of genetic regulatory networks. Complex Networks; 459–481Google Scholar
  2. Bhavnani SK, Abraham A, Demeniuk C et al (2007) Network analysis of toxic chemicals and symptoms: implications for designing first-responder systems. Proc of AMIA 2007:51–55Google Scholar
  3. Bhavnani SK, Bellala G, Ganesan A et al (2010a) The nested structure of cancer symptoms: implications for analyzing co-occurrence and managing symptoms. Methods Inf Med 49:581–591PubMedCrossRefGoogle Scholar
  4. Bhavnani SK, Carini S, Ross J et al (2010b) Network analysis of clinical trials on depression: implications for comparative effectiveness research. Proc of AMIA 2010:51–5Google Scholar
  5. Bhavnani SK, Victor S, Calhoun WJ et al (2011a) How cytokines co-occur across asthma patients: from bipartite network analysis to a molecular-based classification. J Biomed Inform 44:S24–S30PubMedCrossRefGoogle Scholar
  6. Bhavnani SK, Pillai R, Calhoun WJ, et al. (2011b) How circos ideograms complement networks: a case study in asthma. Proc of AMIA Summit on Translational BioinformaticsGoogle Scholar
  7. Bhavnani SK, Bellala G, Victor S et al (2012) The role of complementary bipartite visual analytical representations in the analysis of SNPs: a case study in ancestral informative markers. J Am Med Inform Assoc 19:e5–e12PubMedCrossRefGoogle Scholar
  8. Bousquet J, Mantzouranis E, Cruz AA et al (2010) Uniform definition of asthma severity, control, and exacerbations: document presented for the World Health Organization Consultation on Severe Asthma. J Allergy Clin Immunol 126(5):926–38PubMedCrossRefGoogle Scholar
  9. Card S, Mackinlay JD, Shneiderman B (1999) Readings in information visualization: using vision to think. Morgan Kaufmann, San Francisco, CAGoogle Scholar
  10. Fujisawa T, Kato Y et al (2001) Chemokine production by the BEAS-2B human bronchial epithelial cells: differential regulation of eotaxin, IL-8, and RANTES by TH2- and TH1-derived cytokines. J Allergy Clin Immunol 105:126–133CrossRefGoogle Scholar
  11. Gagliardo R, Chanez P, Mathieu M et al (2003) Persistent activation of nuclear factor–κB signaling pathway in severe uncontrolled asthma. Am J Respir Crit Care Med 168:1190–1198PubMedCrossRefGoogle Scholar
  12. Goh K, Cusick M, Valle D et al (2007) The human disease network. Proc Natl Acad Sci USA 104:8685PubMedCrossRefGoogle Scholar
  13. Heer J, Bostock M, Ogievetsky V (2010) A tour through the visualization zoo. Commun ACM 53:59–67CrossRefGoogle Scholar
  14. Ideker T, Sharan R (2008) Protein networks in disease. Genome Res 18:644PubMedCrossRefGoogle Scholar
  15. Johnson RA, Wichern DW (1998) Applied mutlivariate statistical analysis. Prentice-Hall, NJGoogle Scholar
  16. Kamada T, Kawai S (1989) An algorithm for drawing general undirected graphs. Inform Process Lett 31:7–15CrossRefGoogle Scholar
  17. Krzywinski M, Schein J, Birol I et al (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645PubMedCrossRefGoogle Scholar
  18. Newman MEJ (2010) Networks: an introduction. Oxford University Press, OxfordGoogle Scholar
  19. Nooy W, Mrvar A, Batagelj V (2005) Exploratory social network analysis with Pajek. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  20. Norman D (1993) Things that make us smart. Doubleday/Currency, New YorkGoogle Scholar
  21. Shneiderman B (1996) The eyes have it: a task by data type taxonomy for information visualization. Visual Languages; 336–343Google Scholar
  22. Thomas JJ, Cook KA (2005) Illuminating the path: the R&D agenda for visual analytics. National Visualization and Analytics CenterGoogle Scholar
  23. Tufte ER (1983) The visual display of quantitative information. Graphics Press, Chesire, CTGoogle Scholar
  24. Tversky B, Morrison JB, Betrancourt M (2002) Animation: can it facilitate? Int J Hum Comput Stud 57:247–262CrossRefGoogle Scholar
  25. Yi JS, Kang YA, Stasko J et al. (2007) Toward a deeper understanding of the role of interaction in information visualization. IEEE Transact Visualiz Comput Graph 13Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Suresh K. Bhavnani
    • 1
  • Justin Drake
    • 1
  • Rohit Divekar
    • 2
  1. 1.Institute for Translational SciencesUniversity of Texas Medical BranchGalvestonUSA
  2. 2.Division of Allergy and ImmunologyUniversity of Texas Medical BranchGalvestonUSA

Personalised recommendations