Innovations in 3D Interventional X-ray Imaging

  • Svitlana Zinger
  • Daniel Ruijters
  • Rudolph M. Snoeren
  • Chrysi Papalazarou
  • Peter H. N. de With


Minimal invasive interventions allow the treatment of lesions without the strain of full open surgery. Such image guided interventions and therapies fully rely on the guidance and navigation based on real-time peri-interventional imaging equipment, such as interventional X-ray and ultrasound. Since these imaging modalities are the ‘eyes’ of the treating physician, the associated image quality and imaging features are essential. The addition and further development of 3D imaging capabilities in recent years has broadened the possibilities and capabilities of such procedures, and enabled minimal invasive treatment that could only be performed by open surgery in the past. In this chapter we describe several recent innovations in the area of 3D interventional X-ray imaging in the areas of image quality, 3D model-based catheter reconstruction, multi-modal image fusion, and stereoscopic visualizations.


Graphic Processing Unit Color Center Rigid Transformation Rigid Registration Ghost Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. Abildgaard, A. Kasid Witwit, J. Skaarud Karlsen, E. A. Jacobsen, B. Tennøe, G. Ringstad, and P. Due-Tønnessen. An autostereoscopic 3D display can improve visualization of 3D models from intracranial MR angiography. International Journal of Computer Assisted Radiology and Surgery, 5:549–554, 2010.Google Scholar
  2. 2.
    V. Babin. Charge-transfer processes in doped alkali halides. Radiation Effects and Defects in Solids, 158:227–230(4), Numbers 1–6/January-June 2003.Google Scholar
  3. 3.
    S. A. M. Baert, E. B. van de Kraats, T. van Walsum, M. A. Viergever, and W. Niessen. 3D guide wire reconstruction from biplane image sequences for integrated display in 3D vasculature. IEEE Trans. on Medical Imaging, 22(10):1252–1258, 2003.Google Scholar
  4. 4.
    H.-J. Bender, R. Männer, C. Poliwoda, S. Roth, and M. Walz. Reconstruction of 3D catheter paths from 2D X-ray projections. In MICCAI, volume 1679 of LNCS, pages 981–989, 1999.Google Scholar
  5. 5.
    C. Bregler, A. Hertzmann, and H. Biermann. Recovering non-rigid 3D shape from image streams. In CVPR, volume 2, pages 690–696, 2000.Google Scholar
  6. 6.
    M. Brückner, F. Deinzer, and J. Denzler. Temporal estimation of the 3D guide-wire position using 2D X-ray images. In MICCAI, pages 386–393, 2009.Google Scholar
  7. 7.
    P. Corke. A robotics toolbox for MATLAB. IEEE Robotics and Automation Magazine, 3(1):24–32, 1996.Google Scholar
  8. 8.
    A. Del Bue, X. Lladó, and L. Agapito. Non-rigid metric shape and motion recovery from uncalibrated images using priors. In CVPR, volume 1, 2006.Google Scholar
  9. 9.
    L. Do, S. Zinger, and P. H. N. de With. Quality improving techniques for free-viewpoint DIBR. In IST / SPIE Electronic Imaging, volume 7524, page 10 pages, San Jose, USA, Feb 2010.Google Scholar
  10. 10.
    L. Do, S. Zinger, Y. Morvan, and P. H. N. de With. Quality improving techniques in DIBR for free-viewpoint video. In 3DTV Conference: The True Vision—Capture, Transmission and Display of 3D Video, page 4 pages, Potsdam, Germany, May 2009.Google Scholar
  11. 11.
    N. A. Dodgson. Autostereo displays: 3D without glasses. In EID: Electronic Information Displays, 1997.Google Scholar
  12. 12.
    J. Esthappan and K. Hoffmann. Estimation of catheter orientations from single-plane X-ray images. In SPIE Medical Imaging, volume 3976, pages 28–36, 2000.Google Scholar
  13. 13.
    J. Fayad, A. Del Bue, L. Agapito, and P. Aguiar. Non-rigid structure from motion using quadratic deformation models. In BMVC, 2009.Google Scholar
  14. 14.
    Y. Ganji and F. Janabi-Sharifi. Catheter kinematics for intracardiac navigation. IEEE Transactions on Biomedical Engineering, 56(3):621–632, 2009.Google Scholar
  15. 15.
    R. Hartley and R. Vidal. Perspective nonrigid shape and motion recovery. In ECCV (I), pages 276–289, 2008.Google Scholar
  16. 16.
    T. Hübner and R. Pajarola. Single-pass multiview volume rendering. In Proc. IADIS International Conference on Computer Graphics and Visualization (CGV’07), Lisbon, Portugal, July 2007.Google Scholar
  17. 17.
    S. Ince and J. Konrad. Geometry-based estimation of occlusions from video frame pairs. In Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’05), volume 2, pages ii/933-ii/936, Philadelphia, USA, 2005.Google Scholar
  18. 18.
    S. Kabus, T. Netsch, B. Fischer, and J. Modersitzki. B-spline registration of 3D images with levenberg-marquardt optimization. In SPIE Medical Imaging’04, pages 304–313, 2004.Google Scholar
  19. 19.
    J. Kybic and M. Unser. Fast parametric elastic image registration. IEEE Trans. Image Processing, 12(11):1427–1442, Nov 2003.Google Scholar
  20. 20.
    A. Lempicki. The physics of inorganic scintillators. Journal of Applied Spectroscopy, 62:787–802, 1995. 10.1007/BF02606530.Google Scholar
  21. 21.
    M. Levoy. Effcient ray tracing of volume data. ACM Transactions on Graphics, 9(3):245–261, 1990.Google Scholar
  22. 22.
    H. Liao, T. Inomata, I. Sakuma, and T. Dohi. 3-D augmented reality for MRI-guided surgery using integral videography autostereoscopic image overlay. IEEE Trans. Biomed. Eng., 57(6):1476–1486, June 2010.Google Scholar
  23. 23.
    H. Liao, H. Ishihara, H. H. Tran, K. Masamune, I. Sakuma, and T. Dohi. Fusion of laser guidance and 3-D autostereoscopic image overlay for precision-guided surgery. Lecture Notes in Computer Science, Medical Imaging and Augmented Reality, 5128:367–376, 2008.Google Scholar
  24. 24.
    M. Liévin and E. Keeve. Stereoscopic augmented reality system for computer-assisted surgery. International Congress Series, Computer Assisted Radiology and Surgery, 1230:107–111, June 2001.Google Scholar
  25. 25.
    Z. Lunwei, Q. Jinwu, S. Linyong, and Z. Yanan. Fbg sensor devices for spatial shape detection of intelligent colonoscope. In Proceedings ICRA ’04. 2004 IEEE International Conference on Robotics and Automation, 2004., volume 1, pages 834–840, 2004.Google Scholar
  26. 26.
    J. J. Markham. F-centers in alkali halides. Academic Press, 1966.Google Scholar
  27. 27.
    L. McMillan and R. S. Pizer. An image based approach to three-dimensional computer graphics. Technical Report TR97-013, University of North Carolina at Chapel Hill, 1997.Google Scholar
  28. 28.
    C. Merdes and P. Wolf. Locating a catheter transducer in a three-dimensional ultrasound imaging field. IEEE Transactions on Biomedical Engineering, 48(12):1444–1452, Dec 2001.Google Scholar
  29. 29.
    Y. Mori, N. Fukushima, T. Fujii, and M. Tanimoto. View generation with 3d warping using depth information for FTV. Image Communication, 24(1–2):65–72, 2009.Google Scholar
  30. 30.
    Y. Morvan. Acquisition, compression and rendering of depth and texture for multi-view video. Ph.D. thesis, Eindhoven University of Technology, 2009.Google Scholar
  31. 31.
    Y. Morvan, D. Farin, and P. H. N. de With. System architecture for free-viewpoint video and 3D-TV. IEEE Transactions on Consumer Electronics, 54:925–932, 2008.Google Scholar
  32. 32.
    M. Nagel, M. Hoheisel, R. Petzold, and W. A. K. U. H. W. Krause. Needle and catheter navigation using electromagnetic tracking for computer-assisted c-arm ct interventions. In SPIE Medical Imaging, volume 6509, page 6509J, 2007.Google Scholar
  33. 33.
    M. Nikl, K. Nitsch, F. Somma, P. Fabeni, G. Pazzi, and X. Feng. Luminescence of ternary nanoaggregates in CsI-PbI\(_2\) thin films. Journal of Luminescence, 87–89:372–374, 2000.Google Scholar
  34. 34.
    M. Overdick, T. Solf, and H.-A. Wischmann. Temporal artifacts in flat dynamic X-ray detectors. volume 4320, pages 47–58. SPIE, 2001.Google Scholar
  35. 35.
    C. Papalazarou. 3D Object Reconstruction During Image-Guided Interventions Using Multi-view X-ray. PhD thesis, University of Technology Eindhoven, 2012.Google Scholar
  36. 36.
    C. Papalazarou, P. M. Rongen, and P. H. N. de With. Deformable 3D catheter reconstruction using non-rigid structure-from-motion and a robotics model. In SPIE Medical Imaging: Image-Guided Procedures, Robotic Interventions, and Modeling, pages 8316–71, 2012.Google Scholar
  37. 37.
    A. Quaranta, F. Gramegna, V. Kravchuk, and C. Scian. Radiation damage mechanisms in CsI(Tl) studied by ion beam induced luminescence. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 266(12–13):2723–2728, 2008. Radiation Effects in Insulators—Proceedings of the Fourteenth International Conference on Radiation Effects in Insulators, Fourteenth International Conference on Radiation Effects in Insulators.Google Scholar
  38. 38.
    H. Rabin and C. C. Click. Formation of F centers at low and room temperatures. Phys. Rev., 117(4):1005–1010, Feb 1960.Google Scholar
  39. 39.
    S. Radhakrishna. Polarised luminescence from lead centers in cesium halides. Journal of luminescence, 12/13:409–411, 1976.Google Scholar
  40. 40.
    S. Radhakrishna and K. P. Pande. Lead centers in cesium halides. Phys. Rev. B, 7(1):424–431, Jan 1973.Google Scholar
  41. 41.
    T. Rehman, G. Pryor, J. Melonakos, and A. Tannenbaum. Multi-resolution 3D nonrigid registration via optimal mass transport on the GPU. In Proc. Computational Biomechanics for Medicine-II, MICCAI, pages 122–132, 2007.Google Scholar
  42. 42.
    S. Röhl, S. Speidel, G. Sudra, T. Gehrig, B. P. Müller-Stich, C. Gutt, and R. Dillmann. A surface model for intraoperative soft tissue registration. International Journal of Computer Assisted Radiology and Surgery, 4 Suppl. 1:S106–S107, June 2009.Google Scholar
  43. 43.
    D. Ruijters. Integrating autostereoscopic multi-view lenticular displays in minimally invasive angiography. In Proc. MICCAI AMI-ARCS workshop, pages 87–94, New York, USA, Sept 2008.Google Scholar
  44. 44.
    D. Ruijters. Dynamic resolution in GPU-accelerated volume rendering to autostereoscopic multiview lenticular displays. EURASIP Journal on Advances in Signal Processing, 2009:Article ID 843753, 2009.Google Scholar
  45. 45.
    D. Ruijters. Multi-modal image fusion during minimally invasive treatment. Ph.D. thesis, Katholieke Universiteit Leuven anad University of Technology Eindhoven, 2010.Google Scholar
  46. 46.
    D. Ruijters, R. Homan, P. Mielekamp, and P. van de Haarand Drazenko Babic. Validation of 3D multimodality roadmapping in interventional neuroradiology. Physics in Medicine and Biology, 56(16):5335–5354, Aug 2011.Google Scholar
  47. 47.
    D. Ruijters, B. M. ter Haar Romeny, and P. Suetens. Efficient GPU-based texture interpolation using uniform B-splines. Journal of Graphics Tools, 13(4):61–69, 2008.Google Scholar
  48. 48.
    D. Ruijters, B. M. ter Haar Romeny, and P. Suetens. GPU-accelerated elastic 3D image registration for intra-surgical applications. Computer Methods and Programs in Biomedicine, 103(2):104–112, Aug 2011.Google Scholar
  49. 49.
    D. Ruijters and S. Zinger. IGLANCE: transmission to medical high definition autostereoscopic displays. In 3DTV Conference: The True Vision— Capture, Transmission and Display of 3D Video, page 4, Potsdam, Germany, May 2009.Google Scholar
  50. 50.
    R. Shahnaz, J. F. Walkup, and T. F. Krile. Image compression in signal-dependent noise. Appl Opt., 38(26):5560–5567, Sept 1999.Google Scholar
  51. 51.
    Y.-H. Shiao, T.-J. Chen, K.-S. Chuang, C.-H. Lin, and C.-C. Chuang. Quality of compressed medical images. Journal of Digital Imaging, 20(2):149–159, June 2007.Google Scholar
  52. 52.
    J. H. Siewerdsen and D. A. Jaffray. A ghost story: Spatio-temporal response characteristics of an indirect-detection flat-panel imager. Medical Physics, 26(8):1624–1641, 1999.Google Scholar
  53. 53.
    C. Sigg and M. Hadwiger. Fast third-order texture filtering. In M. Pharr, editor, GPU Gems 2: Programming Techniques for High-Performance Graphics and General-Purpose Computation, pages 313–329, 2005.Google Scholar
  54. 54.
    R. M. Snoeren, H. Steinhauser, L. Alving, H. Stouten, and P. H. N. de With. Flat detector ghost image reduction by UV irradiation. volume 7258, page 72583J. SPIE, 2009.Google Scholar
  55. 55.
    A. T. Stadie, R. A. Kockro, R. Reisch, A. Tropine, S. Boor, P. Stoeter, and A. Perneczky. Virtual reality system for planning minimally invasive neurosurgery. Journal of Neurosurgery, 108:382–394, 2008.Google Scholar
  56. 56.
    O. Stern and M. Volmer. Über die Abklingungszeit der Fluoreszenz. Physikalische Zeitschrift, 20:183–188, 1919.Google Scholar
  57. 57.
    M. Tanimoto. FTV (free viewpoint TV) and creation of ray based image engineering. ECTI Trans. Electrical Eng., Electronics, Communications, 6(1):3–14, Feb 2008.Google Scholar
  58. 58.
    C. van Berkel. Image preparation for 3D-LCD. In Proc. SPIE, Stereoscopic Displays and Virtual Reality Systems VI, volume 3639, pages 84–91, 1999.Google Scholar
  59. 59.
    T. van Walsum, S. Baert, and W. Niessen. Guide Wire Reconstruction and Visualization in 3DRA using Monoplane Fluoroscopic Imaging. IEEE Trans. on Medical Imaging, 24(5):612–624, 2005.Google Scholar
  60. 60.
    C. Vázquez and W. J. Tam. 3D-TV: Coding of disocclusions for 2D+depth representation of multiview images. In Proc. Tenth IASTED International Conference on Computer Graphics and Imaging (CGIM), pages 26–32, Innsbruck, Austria, 2008.Google Scholar
  61. 61.
    H. Wieczorek and M. Overdick. Afterglow and hysteresis in CsI:Tl. volume 1, pages 385–390. Moscow State University, 2000.Google Scholar
  62. 62.
    S. Zinger, L. Do, and P. H. N. de With. Free-viewpoint depth image based rendering. Journal Visual Communication and Image Representation, 21(5–6):533–541, 2010.Google Scholar
  63. 63.
    S. Zinger, D. Ruijters, L. Do, and P. H. N. de With. View interpolation for medical images on autostereoscopic displays. IEEE Transactions on Circuits and Systems for Video Technology, 22(1):128–137, Jan 2012.Google Scholar
  64. 64.
    C. L. Zitnick, S. B. Kang, M. Uyttendaele, S. Winder, and R. Szeliski. High-quality video view interpolation using a layered representation. In ACM SIGGRAPH ’04, pages 600–608, 2004.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Svitlana Zinger
    • 1
  • Daniel Ruijters
    • 2
  • Rudolph M. Snoeren
    • 1
  • Chrysi Papalazarou
    • 1
    • 3
  • Peter H. N. de With
    • 1
  1. 1.Video Coding and Architectures research groupEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Interventional X-Ray InnovationPhilips HealthcareBestThe Netherlands
  3. 3.Philips ResearchEindhovenThe Netherlands

Personalised recommendations