Advertisement

Tree Species, Genetics and Regeneration for Bioenergy Feedstock in Northern Europe

  • Lars RytterEmail author
  • Karin Johansson
  • Bo Karlsson
  • Lars-Göran Stener
Chapter

Abstract

In this chapter we discuss tree species that exhibit rapid growth in northern Europe, i.e. the Nordic and Baltic countries. These species include both common indigenous species and introduced species. We continue with an evaluation of current breeding work and the genetic potential of species that may be suitable for biomass production in this region. Because short rotation times are commonly desired in biomass production, fast, safe and cost-efficient establishment of stands is important. By carefully considering the conditions of the regeneration sites, selecting the most improved plant material from the tree species best suited to each site, and using the best available techniques for stand establishment, we offer guidance to successful growth and cultivation of various tree species to provide society with a renewable biomass supply for energy use.

Keywords

Adaptation Biomass production Breeding Clone Management Native and non-native species Nordic and Baltic countries Planting Regeneration Rotation time Seedlings Silviculture 

Notes

Acknowledgements

This book chapter was written with the financial support from the Forestry Research Institute of Sweden (Skogforsk). Pieter Kempeneers is acknowledged for producing Fig. 2.1 for this chapter.

References

  1. Afas NA, Marron N, van Dongen S, Laureysens I, Ceulemans R (2008) Dynamics of biomass production in a poplar coppice culture over three rotations (11 years). Forest Ecol Manag 255:1883–1891CrossRefGoogle Scholar
  2. Bekeris P (2011) Latvia’s forest during 20 years of independence. Riga, BALTI Group p 46Google Scholar
  3. Bergstedt A (2005) Træarternas anvendelse og produktionspotentiale [The use and production potential of tree species]. Dansk Skovbrugs Tidsskrift.1–2/05:342–360. DanishGoogle Scholar
  4. Bergstedt A, Jørgensen BB (1992) Hugstforsøg i Abies grandis [Thining trials in Abies grandis]. Videnblande Skovbrug. 5.6–2. DanishGoogle Scholar
  5. Binkley D (1981) Nodule biomass and acetylene reduction rates of red alder and sitka alder on Vancouver Island, BC. Can J Forest Res 11:281–286Google Scholar
  6. Bisoffi S, Gullberg U (1996) Poplar breeding and selection strategies. In: Stettler RF, Bradshaw HD Jr, Heilman PE, Hinckley TM (eds) Biology of Populus and its implications for management and conservation. Ottawa, Ontario. NRC Research Press, Canada, p 139–158Google Scholar
  7. Brázdil R, Dobrovolný P, Luterbacher J, Moberg A (2010) European climate of the past 500 years: new challenges for historical climatology. Clim Chang 101:7–40CrossRefGoogle Scholar
  8. Brolin A, Norén A, Ståhl EG (1995) Wood and pulp characteristics of juvenile Norway spruce: a comparison between a forest and an agricultural stand. Tappi J 78:203–214Google Scholar
  9. Brunberg T (2011) Forest fuel: assortments, methods and costs 2010. Uppsala, Skogforsk, Resultat no. 8; 2011, p 2 Swedish with English summaryGoogle Scholar
  10. Cameron AD (1996) Managing birch woodlands for the production of quality timber. For 69:357–371CrossRefGoogle Scholar
  11. Chong J, Poutaraud A, Hugueney P (2009) Metabolism and roles of stilbenes in plants. Plant Sci 177:143–155CrossRefGoogle Scholar
  12. Danell Ö (1993) Breeding programmes in Sweden. 1. General approach. In: Lee SJ (ed) Progeny testing and breeding strategies. In: Proceedings of the Nordic group of tree breeders, Edinburgh, 6–10 Oct 1993, Forestry Authority, Scotland, p 128 (i–v)Google Scholar
  13. Danmarks Statistik (2012) Statistical Yearbook 2012. Copenhagen, Danmarks statistic. p 523 DanishGoogle Scholar
  14. Dickman DI (2006) Silviculture and biology of short rotation woody crops in temperate regions: then and now. Biomass Bioenerg 30:606–705CrossRefGoogle Scholar
  15. Dinus RJ, Payne P, Sewell MM, Chiang VL, Tuskan GA (2001) Genetic modification of short rotation poplar wood: properties for ethanol fuel and fiber production. Crit Rev Plant Sci 20:51–69CrossRefGoogle Scholar
  16. Directorate General of State Forests [Internet] (2012) Forest resources. Vilnius, Directorate General of State Forests at the Ministry of Environment of the Republic of Lithuania. http://www.gmu.lt.
  17. Ekö PM, Larsson-Stern M, Albrektson A (2004) Growth and yield of hybrid larch (Larix × eurolepis A. Henry) in southern Sweden. Scand J For Res 19:320–328CrossRefGoogle Scholar
  18. Elfving B, Norgren O (1993) Volume yield superiority of lodgepole pine compared to Scots pine in Sweden. In: Lindgren D (ed) Pinus contorta from untamed forest to domesticated crop. In: Proceedings of the IUFRO meeting and Frans Kempe Symposium 1992, on Pinus contorta provenances and breeding. Swedish University of Agricultural Sciences, Department of Forest Genetics and Plant Physiology, Umeå, Rapport 11. p 69–80Google Scholar
  19. Elfving B, Ericsson T, Rosvall O (2001) The introduction of lodgepole pine for wood production in Sweden—a review. For Ecol Manag 141:15–29CrossRefGoogle Scholar
  20. Ericsson T (1994) Lodgepole pine (Pinus contorta var. latifolia) breeding in Sweden—results and prospects based on early evaluations. [Doctoral dissertation], Swedish University of Agricultural Sciences, Faculty of Forestry, Department of Forest Genetics and Plant Physiology, Umeå, p 32Google Scholar
  21. Ericsson T, Fries A, Gref R (2001) Genetic correlations of heartwood extractives in Pinus sylvestris progeny tests. For Genet 8:73–79Google Scholar
  22. Eriksson H (1976) Yield of Norway spruce in Sweden. Stockholm, Royal College of Forestry, Department of Forest Yield Research, Research Notes No 41. p 291Google Scholar
  23. Ferm A, Kauppi A (1990) Coppicing as a means for increasing hardwood biomass production. Biomass 22:107–121CrossRefGoogle Scholar
  24. Finnish Forest Research Institute (2011) Finnish statistical yearbook of forestry. Vantaa, Finnish Forest Research Institute. p 469 Finnish with English summaryGoogle Scholar
  25. Finnish Forest Research Institute (2012). State of Finland’s Forests 2012: Criterion 4 Biological diversity. Introduced tree species (4.4). Vantaa, Finnish Forest Research Institute. http://www.metla.fi/metinfo/sustainability/c4-introduced-tree.htm
  26. Forest Europe (2011). State of Europe’s Forests 2011—status and trends in sustainable forest management in Europe. Forest Europe Liaison Unit, Oslo, p 337Google Scholar
  27. Frisk A (2011) Grazing damages on larch seedlings. Skinnskatteberg, Swedish University of Agricultural Sciences, School for Forest Management, Skogsmästarprogrammet Examensarbete 2011:12. p 37 Swedish with English summaryGoogle Scholar
  28. Grossnickle SC (2000) Ecophysiology of northern spruce species: the performance of planted seedlings. NRC Research Press, Ottawa, p 409Google Scholar
  29. Hagquist R, Hahl J (1998) Rauduskoivun siemenviljelysten jalostushyöty Etelä-ja Keski-Suomessa [Genetic gain provided by seed orchards of silver birch in southern and central Finland]. Reports from the Foundation for Forest Tree Breeding 13. p 32 In Finnish with English summaryGoogle Scholar
  30. Hakkila P (1966) Investigations on the basic density of Finnish pine, spruce and birch wood. Communicationes Instituti Forestalis Fenniae 61(5):1–98Google Scholar
  31. Hannerz M (1998) Genetic and seasonal variation in hardiness and growth rhythm in boreal and temperate conifers. Uppsala, Skogforsk, Report No 2/1998. p 144Google Scholar
  32. Hansen JK (2007) Dyrkningssikker Douglasgran—en evaluering af forsøg med douglasgranfrøkilder [Safe cultivation of Douglas fir—an evaluation of trials with seed sources]. Afrapportering af produktudviklingsprojekt: “Dyrkningssikker douglasgran”, Skov & Landskab. p 20 DanishGoogle Scholar
  33. Hansen JK, Roulund H (2011) Sitkagrankloner til biomasseproduktion—potentiale i eksisterende forædlingsprogrammer [Clones of sitka spruce for biomass production—potentials in existing breeding programs]. Copenhagen University, Copenhagen, Skov & Landskab. Videnblad 3, 4–4 DanishGoogle Scholar
  34. Henriksen HA (1988) Skoven og dens dyrkning [The forest and its cultivation]. Copenhagen, Dansk Skovforening/Nyt Nordisk Forlag Arnold Busck. p 664 DanishGoogle Scholar
  35. Högbom L, Nilsson U, Örlander G (2002) Nitrate dynamics after clear felling monitored by in vivo nitrate reductase activity (NRA) and natural 15N abundance of Deschampsia flexuosa (L.) Trin. For Ecol Manag 160:273–280CrossRefGoogle Scholar
  36. Hultén E (1950) Atlas of the distribution of vascular plants in NW. Europe. Generalstabens Litografiska Anstalts Förlag, Stockholm, p 512Google Scholar
  37. IPCC (Intergovernmental Panel on Climate Change) (2007) Climate change 2007: Synthesis report. Geneva, Switzerland. p 104Google Scholar
  38. Jensen JS, Harding S, Roulund H (1997) Resistance to the green spruce aphid (Elatobium abietinum Walker) in progenies of Sitka spruce (Picea sitchensis (Bong) Carr.). For Ecol Manag 97:207–214CrossRefGoogle Scholar
  39. Jönsson AM, Bärring L (2011) Ensemble analysis of frost damage on vegetation caused by spring backlashes in a warmer Europe. Nat Hazard Earth Sys Sci 11:401–418CrossRefGoogle Scholar
  40. Karlman L (2010) Genetic variation in frost tolerance, juvenile growth and timber production in Russian larches (Larix Mill.)—Implications for use in Sweden. Acta Universitatis Agriculturae Sueciae 2010:30, Umeå, p 91Google Scholar
  41. Karlman L, Mörling T, Martinsson O (2005) Wood density, annual ring width and latewood content in larch and Scots pine. Eurasian J For Res 8(2):91–96Google Scholar
  42. Karlsson C, Örlander G (2000) Soil scarification shortly before a rich seed fall improves seedling establishment in seed tree stands of Pinus sylvestris. Scand J For Res 15:256–266CrossRefGoogle Scholar
  43. Kempeneers P, Sedano F, Seebach L, Strobl P, San-Miguel-Ayanz J (2011) Data fusion of different spatial resolution remote sensing images applied to forest-type mapping. IEEE Trans Geosci Remote Sens 49:4977–4986CrossRefGoogle Scholar
  44. Keskkonnateabe Keskus 2010 Yearbook of Forest 2009. Tartu, Environmental Information Center, p 217In Estonian with English summaryGoogle Scholar
  45. Koski V, Rousi M (2005) A review of the promises and constraints of breeding silver birch (Betula pendula Roth) in Finland. For 78:187–198Google Scholar
  46. Langvall O, Nilsson U, Örlander G (2000) Frost damage to planted Norway spruce seedlings—Influence of site preparation and seedling type. For Ecol Manag 141:225–237Google Scholar
  47. Latvia Forest Industry Federation (2008) Forest sector in Latvia 2008. Latvia Forest Industry Federation, Riga, p 32Google Scholar
  48. Lee SJ (1999) Improving the timber quality of Sitka spruce through selection and breeding. For 72:123–133Google Scholar
  49. Lee SJ (2001) Selection of parents for the Sitka spruce breeding population in Britain and the strategy for the next breeding cycle. For 74:129–143Google Scholar
  50. Lee S, Matthews R (2004) An indication of the likely volume gains from improved Sitka spruce planting stock. Forestry Commission, Forestry Commission Information Note, Edinburgh, p 4Google Scholar
  51. Lehtosalo M, Mäkelä A, Valkonen S (2010) Regeneration and tree growth dynamics of Picea abies, Betula pendula and Betula pubescens in regeneration areas treated with spot mounding in southern Finland. Scand J For Res 25:213–223CrossRefGoogle Scholar
  52. Li B, Wyckoff GW, Einspahr DW (1993) Hybrid aspen performance and genetic gains. Northern J Appl For 10:117–122Google Scholar
  53. Ljunger Å (1972) Artkorsning och polyploidiförädling inom släktet Alnus [Interspecific crossings and polyploidy breeding in the genus Alnus]. [Licentiate thesis in Forest Genetics]. Royal College of Forestry, Stockholm, p 66 SwedishGoogle Scholar
  54. Lukkarinen AJ, Ruotsalainen S, Nikkanen T, Peltola H (2010) Survival, height growth and damages of Siberian (Larix sibirica Ledeb.) and Dahurian (L. gmelinii Rupr.) larch provenances in field trials located in southern and northern Finland. Silva Fenn 44:727–747Google Scholar
  55. Marklund LG (1988) Biomass functions for pine, spruce and birch in Sweden. Umeå, Swedish University of Agricultural Sciences, Dept. Forest Survey, Report no. 45. p 73 Swedish with English summaryGoogle Scholar
  56. Martinsson O (1985) Douglas fir seed collection for establishment of progeny trial in Sweden. Umeå, Swedish University of Agricultural Science, Department of Silviculture, Arbetsrapport no. 2. p 12Google Scholar
  57. Matthews JD (1987) The silviculture of alders in Great Britain. University of Oxford, Forestry Institute, OFI Occasional Papers No. 34. p 29–38Google Scholar
  58. McCarthy R, Rytter L (2012) Regeneration ability of poplar—a study of stump sprouting in southern Sweden. In: FAO. International Poplar Commission Working Paper IPC/11. Rome, FAO. p 94Google Scholar
  59. Metla (2011) Främmande trädslag—en möjlighet eller ett hot? [Foreign tree species—a possibility or a threat?]. Vantaa, The Finnish Forest Research Institute. 2011. http://www.metla.fi/uutiskirje/rannikkometsat/2011-02/index.html. In Swedish
  60. Neale DB, Kremer A (2011) Forest tree genomics: growing resources and applications. Nat Rev Genet 12:111–122PubMedCrossRefGoogle Scholar
  61. Newcombe G (1996) The specificity of fungal pathogens of Populus. In: Stettler RF, Bradshaw HD Jr, Heilman PE, Hinckley TM (eds) Biology of Populus and its implications for management and conservation. NRC Research Press, Ottawa, pp 223–246Google Scholar
  62. Newcombe G, Ostry M, Hubbes M, Perinet P, Mottet MJ (2001) Poplar diseases. In: Dickmann DI, Isebrands JG, Eckenwalder JE, Richardson J (eds) Poplar culture in North America. NRC Research Press, Ottawa, pp 249–276Google Scholar
  63. Niemistö P (1996) Yield and quality of planted silver birch (Betula pendula) in Finland—Preliminary review. Norwegian J Agric Sci Suppl 24:51–59Google Scholar
  64. Nord-Larsen T, Meilby H, Skovsgaard JP (2009) Site-specific height growth models for six common tree species in Denmark. Scandinavian J For Res 24:194–204CrossRefGoogle Scholar
  65. Øyen BH (2005) Growth and yield in stands of Sitka spruce (Picea sitchensis (Bong.) Carr.) in Norway. Rapport fra skogforskningen. 4/05:1–46. In Norwegian with English summaryGoogle Scholar
  66. Paris P, Mareschi L, Sabatti M, Pisanelli A, Ecosse A, Nardin F et al (2011) Comparing hybrid Populus clones for short-rotation forestry across northern Italy after two biennial rotations: survival, growth and yield. Biomass Bioenergy 35:1524–1532CrossRefGoogle Scholar
  67. Parviainen J, Västilä S (2011) State of Finland’s Forests 2011. Helsinki, Ministry ofAgriculture and Forestry and Finnish Forest Research Institute (Metla), Publication no. 5a/2011. p 95Google Scholar
  68. Peltola H, Kilpeläinen A, Sauvala K, Räisänen T, Ikonen VP (2007) Effects of early thinning regime and tree status on the radial growth and wood density of Scots pine. Silva Fenn 41:489–505Google Scholar
  69. Persson O (1992) A growth simulator for Scots pine (Pinus sylvestris L.) in Sweden. Garpenberg, Swedish University of Agricultural Sciences, Dept. Forest Yield Research, Report No. 31. p 206 Swedish with English summaryGoogle Scholar
  70. Pinon J, Frey P, Husson C (2006) Wettability of poplar leaves influences dew formation and infection by Melampsora larici-populina. Plant Dis 90:177–184CrossRefGoogle Scholar
  71. Poke FS, Potts BM, Vaillancourt RE, Raymond CA (2006) Genetic parameters for lignin, extractives and decay in Eucalyptus globulus. Ann For Sci 63:813–821CrossRefGoogle Scholar
  72. Rönnberg J, Vollbrecht G (1999) Early infection by Heterobasidion annosum in Larix × eurolepis seedlings planted on infested sites. European J For Pathol 29:81–86CrossRefGoogle Scholar
  73. Rosvall O, Jansson G, Andersson B, Ericsson T, Karlsson B, Sonesson J. et al (2001) Genetic gain from present and future seed orchards and clone mixes. Uppsala, SkogForsk, Redogörelse no. 1. p 41 Swedish with English summaryGoogle Scholar
  74. Rytter L (1996) Grey alder in forestry: a review. Norwegian J Agric Sci Suppl 24:61–78Google Scholar
  75. Rytter L (1998) Pure and mixed deciduous forest—ecology and silviculture. Uppsala, SkogForsk, Redogörelse no. 8 1998. p 62 Swedish with English summaryGoogle Scholar
  76. Rytter L (2004) Production potentials of aspen, birch and alder—a review on possibilities and consequences of harvest of biomass and merchantable timber. Uppsala, Skogforsk, Redogörelse no. 4 2004. p 62 Swedish with English summaryGoogle Scholar
  77. Rytter L (2006) A management regime for hybrid aspen stands combining conventional forestry techniques with early biomass harvests to exploit their rapid early growth. For Ecol Manag 236:422–426CrossRefGoogle Scholar
  78. Rytter L, Stener L (2005) Productivity and thinning effects in hybrid aspen (Populus tremula L. × P. tremuloides Michx.) stands in southern Sweden. For 78:285–295Google Scholar
  79. Rytter L, Sennerby-Forsse L, Alriksson A (2000) Natural regeneration of grey alder (Alnus incana [L.] Moench.) stands after harvest. J Sustain For 10:287–294CrossRefGoogle Scholar
  80. Rytter L, Karlsson A, Karlsson M, Stener LG (2008) Skötsel av björk, al och asp [Management of birch, alder and aspen]. Swedish Forest Agency, Skogsskötselserien no. 9, p 122 http://www.skogsstyrelsen.se/Aga-och-bruka/Skogsbruk/Skogsskotselserien/. Swedish
  81. Rytter L, Johansson T, Karacic A, Weih M (2011a) Investigation for a Swedish research program on the genus Populus. Uppsala, Skogforsk, Arbetsrapport no. 733, p 148 Swedish with English summaryGoogle Scholar
  82. Rytter L, Stener LG, Övergaard R (2011b) Odling av hybridasp och poppel [Cultivation of hybrid aspen and poplar]. Uppsala, Skogforsk, Guidance, p 40 SwedishGoogle Scholar
  83. Seppä H, Alenius T, Bradshaw RHW, Giesecke T, Heikkilä M, Muukkonen P (2009) Invasion of Norway spruce (Picea abies) and the rise of the boreal ecosystem in Fennoscandia. J Ecol 97:629–640CrossRefGoogle Scholar
  84. Statistics Norway (2011) Statistical Yearbook of Norway. Oslo, Statistics Norway. http://www.ssb.no/english/subjects/10/04/20/
  85. St Clair JB (2006) Genetic variation in fall cold hardiness in coastal Douglas-fir in western Oregon and Washington. Can J Bot 84:1110–1121CrossRefGoogle Scholar
  86. Steenackers V, Strobl S, Steenackers M (1990) Collection and distribution of poplar species, hybrids and clones. Biomass 22:1–20CrossRefGoogle Scholar
  87. Stener LG (1998) Provincial statistics on the forest land area and growing stock of broadleaved trees in Sweden. Uppsala, SkogForsk, Redogörelse no. 4. p 61 Swedish with English summaryGoogle Scholar
  88. Stener LG (2007) Utvärdering av sydsvenska avkommeförsök med klibbal [Evaluation of south Swedish progeny tests with black alder]. Uppsala, Arbetsrapport no. 649. Skogforsk, p 43 In SwedishGoogle Scholar
  89. Stener LG (2010) Tillväxt, vitalitet och densitet för kloner av hybridasp och poppel i sydsvenska fältförsök [Growth, vitality and density of clones of hybrid aspen and poplar in field trials in southern Sweden]. Uppsala, Skogforsk, Arbetsrapport no. 717. p 45 In SwedishGoogle Scholar
  90. Stener LG, Jansson G (2005) Improvement of Betula pendula by clonal and progeny testing of phenotypically selected trees. Scand J For Res 20:292–303CrossRefGoogle Scholar
  91. Svensson J (2011) Survival and growth of Douglas fir in southern Sweden. Swedish University of Agricultural Sciences, School for Forest Management, Skinnskatteberg, Skogsmästarprogrammet 2011:24, p 47 Swedish with English abstractGoogle Scholar
  92. Swedish Forest Agency (2012) Swedish Statistical Yearbook of Forestry 2012. Swedish Forest Agency, Jönköping, p 378Google Scholar
  93. Swedjemark G, Stenlid J (1995) Susceptibility of conifer and broadleaf seedlings to Swedish S and P strains of Heterobasidion annosum. Plant Pathol 44:73–79CrossRefGoogle Scholar
  94. Tullus A, Rytter L, Tullus T, Weih M, Tullus H (2012) Short-rotation forestry with hybrid aspen (Populus tremula L. × P. tremuloides Michx.) in Northern Europe. Scand J For Res 27:10–29CrossRefGoogle Scholar
  95. Vadla K (2007) Sitkagran—utbredelse, egenskaper og anvendelse [Sitka spruce – distribution, properties and use]. Viten fra Skog og landskap 2/07:27–31. In NorwegianGoogle Scholar
  96. Weih M (2004) Intensive short rotation forestry in boreal climates: present and future perspectives. Can J For Res 34:1369–1378CrossRefGoogle Scholar
  97. Yanchuk A, Allard G (2009) Tree improvement programmes for forest health—can they keep pace with climate changes? Unasylva 60(231/232):50–56Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Lars Rytter
    • 1
    Email author
  • Karin Johansson
    • 1
  • Bo Karlsson
    • 1
  • Lars-Göran Stener
    • 1
  1. 1.The Forestry Research Institute of Sweden (Skogforsk)SvalövSweden

Personalised recommendations