Advertisement

Biomarkers to Predict Glaucoma Surgical Success

  • Paul A. KnepperEmail author
  • Algis Grybauskas
  • Paulius V. Kuprys
  • Kevin Skuran
  • John R. Samples
Chapter

Abstract

Primary open-angle glaucoma (POAG) is a primary neuronal disease of the optic nerve without a definable cause which may require surgical intervention to prevent further visual loss and/or normalize intraocular pressure. Worldwide, POAG is the second leading cause of blindness; there are 45 million people today with POAG and bilateral blindness is present in 4.5 million people. We cataloged all known ocular biomarkers in the aqueous humor, trabecular meshwork, optic nerve, as well as systemic biomarkers in blood serum/plasma into four categories, namely, extracellular matrix (ECM), cell signaling molecules, aging/stress, and immunity-related changes. We present a theoretical model to show signaling pathways of the ECM, cell signaling, and innate immune response through activation of Toll-4 receptor and monocyte activation which may impact the success of glaucoma surgery. The innate immune system is driven by the danger signal, the low molecular weight hyaluronic acid, and the activation of monocytes which collectively may be useful in predicting surgical success in POAG.

Keywords

Hyaluronic Acid Aqueous Humor Trabecular Meshwork Visual Field Loss Monocyte Activation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

Video 27.1

Nail fold hemorrhages in a 74-year-old low-tension POAG patient who has had successful filtration surgery and stable visual fields. Video capillaroscopy was performed using a JH-1004 capillaroscope at 280× magnification. Note the two nail fold hemorrhages indicated by flashing white arrows (AVI 208582 kb)

References

  1. 1.
    Kwon YH, Fingert JH, Kuehn MH, Alward WLM. Primary open-angle glaucoma. N Engl J Med. 2009;360(11):1113–24.PubMedCentralPubMedGoogle Scholar
  2. 2.
    Kass MA, Gordon MO, Gao F, Heuer DK, Higginbotham EJ, Johnson CA, et al. Delaying treatment of ocular hypertension: the ocular hypertension treatment study. Arch Ophthalmol. 2010;128(3):276–87.PubMedCentralPubMedGoogle Scholar
  3. 3.
    Gordon MO, Torri V, Miglior S, Beiser JA, Floriani I, Miller JP, et al., Ocular Hypertension Treatment Study Group, European Glaucoma Prevention Study Group. Validated prediction model for the development of primary open-angle glaucoma in individuals with ocular hypertension. Ophthalmology. 2007;114(1):10–9.Google Scholar
  4. 4.
    Weinreb RN. IOP and the risk of progression to glaucoma. Graefes Arch Clin Exp Ophthalmol. 2005;243(6):511–2.PubMedGoogle Scholar
  5. 5.
    De Moraes CG, Liebmann JM, Park SC, Teng CC, Nemiroff J, Tello C, Ritch R. Optic disc progression and rates of visual field change in treated glaucoma. Acta Ophthalmol. 2013;91(2):e86–91.Google Scholar
  6. 6.
    Allingham RR, Liu Y, Rhee DJ. The genetics of primary open-angle glaucoma: a review. Exp Eye Res. 2009;88(4):837–44.PubMedGoogle Scholar
  7. 7.
    Bhattacharya SK, Lee RK, Grus FH, Seventh ARVO/Pfizer Ophthalmics Research Institute Conference Working Group. Molecular biomarkers in glaucoma. Invest Ophthalmol Vis Sci. 2013;54(1):121–31.PubMedCentralPubMedGoogle Scholar
  8. 8.
    Caprioli J. Glaucoma is a neuronal disease. Eye. 2007;21:S6–10.Google Scholar
  9. 9.
    Ross JS, Symmans WF, Pusztai L, Hortobagyi GN. Pharmacogenomics and clinical biomarkers in drug discovery and development. Am J Clin Pathol. 2005;124 Suppl 1:S29–41.PubMedGoogle Scholar
  10. 10.
    de Lemos JA, Lloyd-Jones DM. Multiple biomarker panels for cardiovascular risk assessment. N Eng J Med. 2008;358(20):2172–4.Google Scholar
  11. 11.
    Ray S, Britschgi M, Herbert C, Takeda-Uchimura Y, Boxer A, Blennow K, et al. Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nat Med. 2007;13(11):1359–62.PubMedGoogle Scholar
  12. 12.
    Simonsen AH, McGuire J, Hansson O, Zetterberg H, Podust VN, Davies HA, et al. Novel panel of cerebrospinal fluid biomarkers for the prediction of progression to Alzheimer dementia in patients with mild cognitive impairment. Arch Neurol. 2007;64(3):366–70.PubMedGoogle Scholar
  13. 13.
    Knepper PA, Goossens W, Mayanil CS. CD44H localization in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 1998;39(5):673–80.PubMedGoogle Scholar
  14. 14.
    Picciani R, Desai K, Guduric-Fuchs J, Cogliati T, Morton CC, Bhattacharya SK. Cochlin in the eye. Prog Retin Eye Res. 2007;26(5):453–69.PubMedCentralPubMedGoogle Scholar
  15. 15.
    Knepper PA, Goossens W, Hvizd M, Palmberg PF. Glycosaminoglycans of the human trabecular meshwork in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 1996;37(7):1360–7.PubMedGoogle Scholar
  16. 16.
    Hann CR, Springett MJ, Wang X, Johnson DH. Ultrastructural localization of collagen IV, fibronectin, and laminin in the trabecular meshwork of normal and glaucomatous eyes. Ophthalmic Res. 2001;33(6):314–24.PubMedGoogle Scholar
  17. 17.
    Umihira J, Nagata S, Nohara M, Hanai T, Usuda N, Segawa K. Localization of elastin in the normal and glaucomatous human trabecular meshwork. Invest Ophthalmol Vis Sci. 1994;35(2):486–94.PubMedGoogle Scholar
  18. 18.
    Pena JD, Netland PA, Vidal I, Dorr DA, Rasky A, Hernandez MR. Elastosis of the lamina cribrosa in glaucomatous optic neuropathy. Exp Eye Res. 1998;67(5):517–24.PubMedGoogle Scholar
  19. 19.
    Vesaluoma M, Mertaniemi P, Mannonen S, Lehto I, Uusitalo R, Sarna S, et al. Cellular and plasma fibronectin in the aqueous humour of primary open-angle glaucoma, exfoliative glaucoma and cataract patients. Eye. 1998;12(5):886–90.PubMedGoogle Scholar
  20. 20.
    Navajas EV, Martins JR, Melo Jr LA, Saraiva VS, Dietrich CP, Nader HB, et al. Concentration of hyaluronic acid in primary open-angle glaucoma aqueous humor. Exp Eye Res. 2005;80(6):853–7.PubMedGoogle Scholar
  21. 21.
    Gong H, Ye W, Freddo TF, Hernandez MR. Hyaluronic acid in the normal and glaucomatous optic nerve. Exp Eye Res. 1997;4(4):587–95.Google Scholar
  22. 22.
    Pena JD, Varela HJ, Ricard CS, Hernandez MR. Enhanced tenascin expression associated with reactive astrocytes in human optic nerve heads with primary open angle glaucoma. Exp Eye Res. 1999;68(1):29–40.PubMedGoogle Scholar
  23. 23.
    Flugel-Koch C, Ohlmann A, Fuchshofer R, Weige-Lussen U, Tamm ER. Thrombospondin-1 in the trabecular meshwork: localization in normal and glaucomatous eyes, and induction by TGF-β1 and dexamethasone in vitro. Exp Eye Res. 2004;79(5):649–63.PubMedGoogle Scholar
  24. 24.
    Ronkko S, Rekonen P, Kaarniranta K, Prustjarvi T, Terasvirta M, Uusitaol H. Matrix metalloproteinases and their inhibitors in the chamber angle of normal eyes and patients with primary open-angle glaucoma and exfoliation glaucoma. Graefes Arch Clin Exp Ophthalmol. 2007;245(5):697–704.PubMedGoogle Scholar
  25. 25.
    Yan X, Tezel G, Wax MB, Edward DP. Matrix metalloproteinases and tumor necrosis factor-α in glaucomatous optic nerve head. Arch Ophthalmol. 2000;118(5):666–73.PubMedGoogle Scholar
  26. 26.
    Schlotzer-Schrehardt U, Lommatzsch J, Kuchle M, Konstas AG, Naumann GO. Matrix metalloproteinases and their inhibitors in aqueous humor of patients with pseudoexfoliation syndrome/glaucoma and primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2003;44(3):1117–25.PubMedGoogle Scholar
  27. 27.
    Golubnitschaja O, Yeghiazaryan K, Liu R, Mönkemann H, Leppert D, Schild H, et al. Increased expression of matrix metalloproteinases in mononuclear blood cells of normal-tension glaucoma patients. J Glaucoma. 2004;13(1):66–72.PubMedGoogle Scholar
  28. 28.
    Maatta M, Tervahartiala T, Harju M, Airaksinen J, Autio-Harmainen H, Sorsa T. Matrix metalloproteinases and their tissue inhibitors in aqueous humor of patients with primary open-angle glaucoma, exfoliation syndrome, and exfoliation glaucoma. J Glaucoma. 2005;14(1):64–9.PubMedGoogle Scholar
  29. 29.
    Kuchtey J, Källberg ME, Gelatt KN, Rinkoski T, Komàromy AM, Kuchtey RW. Angiopoietin-like 7 secretion is induced by glaucoma stimuli and its concentration is elevated in glaucomatous aqueous humor. Invest Ophthalmol Vis Sci. 2008;49(8):3438–48.PubMedCentralPubMedGoogle Scholar
  30. 30.
    Mizokami J, Kanamori A, Negi A, Nakamura M. A preliminary study of reduced expression of aquaporin-9 in the optic nerve of primate and human eyes with glaucoma. Curr Eye Res. 2011;36(11):1064–7.PubMedGoogle Scholar
  31. 31.
    Cumurcu T, Bulut Y, Demir HD, Yenisehirli G. Aqueous humor erythropoietin levels in patients with primary open-angle glaucoma. J Glaucoma. 2007;16(8):645–8.PubMedGoogle Scholar
  32. 32.
    Tezel G, Kass MA, Kolker AE, Becker B, Wax MB. Plasma and aqueous humor endothelin levels in primary open-angle glaucoma. J Glaucoma. 1997;6(2):83–9.PubMedGoogle Scholar
  33. 33.
    Emre M, Orgul S, Haufschild T, Shaw SG, Flammer J. Increased plasma endothelin-1 levels in patients with progressive open angle glaucoma. Br J Ophthalmol. 2005;89(1):60–3.PubMedCentralPubMedGoogle Scholar
  34. 34.
    Hu DN, Ritch R. Hepatocyte growth factor is increased in the aqueous humor of glaucomatous eyes. J Glaucoma. 2001;10(3):152–7.PubMedGoogle Scholar
  35. 35.
    Ronkko S, Rekonen P, Kaarniranta K, Puustjarvi T, Terasvirta M, Uuusitiao H. Phospholipase A2 in chamber angle of normal eyes and patients with primary open angle glaucoma and exfoliation glaucoma. Mol Vis. 2007;13:408–17.PubMedCentralPubMedGoogle Scholar
  36. 36.
    Dan J, Belyea D, Gertner G, Leshem I, Lusky M, Miskin R. Plasminogen activator inhibitor-1 in the aqueous humor of patients with and without glaucoma. Arch Ophthalmol. 2005;123(2):220–4.PubMedGoogle Scholar
  37. 37.
    Nolan MJ, Giovingo MC, Miller AM, Wertz RD, Ritch R, Liebmann JM, et al. Aqueous humor sCD44 concentration and visual field loss in primary open-angle glaucoma. J Glaucoma. 2007;16(5):419–29.PubMedGoogle Scholar
  38. 38.
    Budak YU, Akdogan M, Huysal K. Aqueous humor level of sCD44 in patients with degenerative myopia and primary open-angle glaucoma. BMC Res Notes. 2009;8(2):224.Google Scholar
  39. 39.
    Noureddin BN, Al-Haddad CE, Bashshur Z, Safieh-Garabedian B. Plasma thymulin and nerve growth factor levels in patients with primary open angle glaucoma and elevated intraocular pressure. Graefes Arch Clin Exp Ophthalmol. 2006;244(6):750–2.PubMedGoogle Scholar
  40. 40.
    Hu DN, Ritch R, Liebmann J, Liu Y, Cheng B, Hu MS. Vascular endothelial growth factor is increased in aqueous humor of glaucomatous eyes. J Glaucoma. 2002;11(5):406–10.PubMedGoogle Scholar
  41. 41.
    Lip PL, Felmeden DC, Blann AD, Matheou N, Thakur S, Cunliffe IA, et al. Plasma vascular endothelial growth factor, soluble VEGF receptor FLT-1, and von Willebrand factor in glaucoma. Br J Ophthalmol. 2002;86(11):1299–302.PubMedCentralPubMedGoogle Scholar
  42. 42.
    Zabala L, Saldanha C, Martins e Silva J, Souza-Ramalho P. Red blood cell membrane integrity in primary open angle glaucoma: ex vivo and in vitro studies. Eye. 1999;13(1):101–3.PubMedGoogle Scholar
  43. 43.
    Javadiyan S, Burdon KP, Whiting MJ, Abhary S, Straga T, Hewitt AW, et al. Elevation of serum asymmetrical and symmetrical dimethylarginine in patients with advanced glaucoma. Invest Ophthalmol Vis Sci. 2012;53(4):1923–7.PubMedGoogle Scholar
  44. 44.
    Kokotas H, Kroupis C, Chiras D, Grigoriadou M, Lamnissou K, Petersen MB, Kitsos G. Biomarkers in primary open angle glaucoma. Clin Chem Lab Med. 2012;50(12):2107–19.PubMedGoogle Scholar
  45. 45.
    Weinstein BI, Iyer RB, Binstock JM, Hamby CV, Schwartz IS, Moy FH, et al. Decreased 3α-hydroxysteroid dehydrogenase activity in peripheral blood lymphocytes from patients with primary open angle glaucoma. Exp Eye Res. 1996;62(1):39–45.PubMedGoogle Scholar
  46. 46.
    Lee P, Lam KW, Lai M. Aqueous humor ascorbate concentration and open-angle glaucoma. Arch Ophthalmol. 1977;95(2):308–10.PubMedGoogle Scholar
  47. 47.
    Fraenkl SA, Muser J, Groell R, Reinhard G, Orgul S, Flammer J, Goldblum D. Plasma citrate levels as potential biomarker for glaucoma. J Ocul Pharmacol Ther. 2011;27(6):577–80.PubMedGoogle Scholar
  48. 48.
    McCarty GR, Schwartz B. Reduced plasma cortisol binding to albumin in ocular hypertension and primary open-angle glaucoma. Curr Eye Res. 1999;18(6):467–76.PubMedGoogle Scholar
  49. 49.
    Wang N, Chintala SK, Fini ME, Schuman JS. Ultrasound activates the TM ELAM-1/IL-1/NF-kappaB response: a potential mechanism for intraocular pressure reduction after phacoemulsification. Invest Ophthalmol Vis Sci. 2003;44(5):1977–81.PubMedCentralPubMedGoogle Scholar
  50. 50.
    Ren H, Magulike N, Ghebremeskel K, Crawford M. Primary open-angle glaucoma patients have reduced levels of blood docosahexaenoic and eicosapentaenoic acids. Prostaglandins Leukot Essent Fatty Acids. 2006;74(3):157–63.PubMedGoogle Scholar
  51. 51.
    Acar N, Berdeaux O, Juaneda P, Grégoire S, Cabaret S, Joffre C, et al. Red blood cell plasmalogens and docosahexaenoic acid are independently reduced in primary open-angle glaucoma. Exp Eye Res. 2009;89(6):840–53.PubMedGoogle Scholar
  52. 52.
    Ferreira SM, Lerner SF, Brunzini R, Evelson PA, Llesuy SF. Oxidative stress markers in aqueous humor of glaucoma patients. Am J Ophthalmol. 2004;137(1):62–9.PubMedGoogle Scholar
  53. 53.
    Gherghel D, Griffiths HR, Hilton EJ, Cunliffe IA, Hosking SL. Systemic reduction in glutathione levels occurs in patients with primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2005;46(3):877–83.PubMedGoogle Scholar
  54. 54.
    Tsai DC, Hsu WM, Chou CK, Chen SJ, Peng CH, Chi CW, et al. Significant variation of the elevated nitric oxide levels in aqueous humor from patients with different types of glaucoma. Ophthalmologica. 2002;216(5):346–50.PubMedGoogle Scholar
  55. 55.
    Fernández-Durango R, Fernández-Martínez A, García-Feijoo J, Castillo A, de la Casa JM, García-Bueno B, et al. Expression of nitrotyrosine and oxidative consequences in the trabecular meshwork of patients with primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2008;49(6):2506–11.PubMedGoogle Scholar
  56. 56.
    Wang N, Chintala SK, Fini ME, Schuman JS. Activation of a tissue-specific stress response in the aqueous outflow pathway of the eye defines the glaucoma disease phenotype. Nat Med. 2001;7(3):304–9.PubMedCentralPubMedGoogle Scholar
  57. 57.
    Tezel G, Wax MB. Hypoxia-inducible factor-1α in the glaucomatous retina and optic nerve head. Arch Ophthalmol. 2004;122(9):1348–56.PubMedGoogle Scholar
  58. 58.
    Liton PB, Challa P, Stinnett S, Luna C, Epstein DL, Gonzalez P. Cellular senescence in the glaucomatous outflow pathway. Exp Gerontol. 2005;40(8–9):745–8.PubMedCentralPubMedGoogle Scholar
  59. 59.
    Luo C, Yang X, Kain A, Powell D, Kuehn MH, Tezel G. Glaucomatous tissue stress and the regulation of immune response through the glial Toll-like receptor signaling. Invest Ophthalmol Vis Sci. 2010;51(11):5697–707.PubMedCentralPubMedGoogle Scholar
  60. 60.
    Cancino-Diaz ME, Sanchez-Becerra M, Elizondo-Olascoaga C, Rodrguez-Martínez S, Cancino-Diaz JC. Amino acid regions 357–368 and 418–427 of Streptococcus pyogenes 60kDa heat shock protein are recognized by antibodies from glaucomatous patient sera. Microb Pathog. 2010;48(6):239–44.PubMedGoogle Scholar
  61. 61.
    Wax MB, Tezel G, Kawase K, Kitazawa Y. Serum autoantibodies to heat shock proteins in glaucoma patients from Japan and the United States. Ophthalmology. 2001;108(2):296–302.PubMedGoogle Scholar
  62. 62.
    Kountouras J, Mylopoulos N, Konstas AG, Zavos C, Chatzopoulos D, Boukla A. Increased levels of Helicobacter pylori IgG antibodies in aqueous humor of patients with primary open-angle and exfoliation glaucoma. Graefes Arch Clin Exp Ophthalmol. 2003;241(11):884–90.PubMedGoogle Scholar
  63. 63.
    Deshpande N, Lalitha P, Krishna das SR, Jethani J, Pillai RM, Robin A, Karthik. Helicobacter pylori IgG antibodies in aqueous humor and serum of subjects with primary open angle and pseudo-exfoliation glaucoma in a South Indian population. J Glaucoma. 2008;17(8):605–10.PubMedGoogle Scholar
  64. 64.
    Tezel G, Seigel GM, Wax MB. Autoantibodies to small heat shock proteins in glaucoma. Invest Ophthalmol Vis Sci. 1998;39(12):2277–87.PubMedGoogle Scholar
  65. 65.
    Joachim SC, Bruns K, Lackner KJ, Pfeiffer N, Grus FH. Antibodies to αB-crystallin, vimentin, and heat shock protein 70 in aqueous humor of patients with normal tension glaucoma and IgG antibody patterns against retinal antigen in aqueous humor. Curr Eye Res. 2007;32(6):501–9.PubMedGoogle Scholar
  66. 66.
    Wang WH, McNatt LG, Pang IH, Hellberg PE, Fingert JH, McCartney MD, et al. Increased expression of serum amyloid A in glaucoma and its effect on intraocular pressure. Invest Ophthalmol Vis Sci. 2008;49(5):1916–23.PubMedGoogle Scholar
  67. 67.
    Yang J, Patil RV, Yu H, Gordon M, Wax MB. T cell subsets and sIL-2R/IL-2 levels in patients with glaucoma. Am J Ophthalmol. 2001;31(4):421–6.Google Scholar
  68. 68.
    Huang P, Zhang SS, Zhang C. Erratum: the two sides of cytokine signaling and glaucomatous optic neuropathy. J Ocul Biol Dis Infor. 2009;2(3):98–103.PubMedGoogle Scholar
  69. 69.
    Kuchtey J, Rezaei KA, Jaru-Ampornpan P, Sternberg PJ, Kuchtey RW. Multiplex cytokine analysis reveals elevated concentration of interleukin-8 in glaucomatous aqueous humor. Invest Ophthalmol Vis Sci. 2010;51(12):6441–7.PubMedCentralPubMedGoogle Scholar
  70. 70.
    Janciauskiene S, Westin K, Grip O, Krakau T. Detection of Alzheimer peptides and chemokines in the aqueous humor. Eur J Ophthalmol. 2011;21(1):104–11.PubMedGoogle Scholar
  71. 71.
    Picht G, Welge-Luessen U, Grehn F, Lutjen-Drecoll E. Transforming growth factor β2 levels in the aqueous humor in different types of glaucoma and the relation to filtering bleb development. Graefes Arch Clin Exp Ophthalmol. 2001;239(3):199–207.PubMedGoogle Scholar
  72. 72.
    Ochiai Y, Ochiai H. Higher concentration of transforming growth factor-beta in aqueous humor of glaucomatous eyes and diabetic eyes. Jpn J Ophthalmol. 2002;46(3):249–53.PubMedGoogle Scholar
  73. 73.
    Sawada H, Fukuchi T, Tanaka T, Abe H. Tumor necrosis factor-alpha concentrations in the aqueous humor of patients with glaucoma. Invest Ophthalmol Vis Sci. 2010;51(2):903–6.PubMedGoogle Scholar
  74. 74.
    Gramlich OW, Bell K, von Thun Und Hohenstein-Blaul N, Wilding C, Beck S, Pfeiffer N, et al. Autoimmune biomarkers in glaucoma patients. Curr Opin Pharmacol. 2013;13(1):90–7.PubMedGoogle Scholar
  75. 75.
    Grus FH, Joachim SC, Bruns K, Lackner KJ, Pfeiffer N, Wax MB. Serum autoantibodies to alpha-fodrin are present in glaucoma patients from Germany and the United States. Invest Ophthalmol Vis Sci. 2006;47(3):968–76.PubMedGoogle Scholar
  76. 76.
    Tezel G, Yang J, Wax MB. Heat shock proteins, immunity and glaucoma. Brain Res Bull. 2004;62(6):473–80.PubMedGoogle Scholar
  77. 77.
    Maruyama I, Ikeda Y, Nakazawa M, Ohguro H. Clinical roles of serum autoantibody against neuron-specific enolase in glaucoma patients. Tohoku J Exp Med. 2002;197(3):125–32.PubMedGoogle Scholar
  78. 78.
    Reichelt J, Joachim SC, Pfeiffer N, Grus FH. Analysis of autoantibodies against human retinal antigens in sera of patients with glaucoma and ocular hypertension. Curr Eye Res. 2008;33(3):253–61.PubMedGoogle Scholar
  79. 79.
    Barany EH. The effect of different kinds of hyaluronidase on the resistance to flow through the angle of the anterior chamber. Acta Ophthalmol. 1956;34(5):397–403.Google Scholar
  80. 80.
    Knepper PA, Fadel JR, Miller AM, Goossens W, Choi J, Nolan MJ, et al. Reconstitution of trabecular meshwork GAGs: influence of hyaluronic acid and chondroitin sulfate on flow rates. J Glaucoma. 2005;14(3):230–8.PubMedGoogle Scholar
  81. 81.
    Keller KE, Bradley JM, Kelley MJ, Acott TS. Effects of modifiers of glycosaminoglycan biosynthesis on outflow facility in perfusion culture. Invest Ophthalmol Vis Sci. 2008;49(6):2495–505.PubMedCentralPubMedGoogle Scholar
  82. 82.
    Knepper PA, Yue BYJT. Abnormal trabecular meshwork outflow pathway. In: Levin LA, Albert DM, editors. Ocular disease: mechanisms and management. London: Elsevier; 2010. p. 171–7.Google Scholar
  83. 83.
    Acott TS, Kelley MJ. Extracellular matrix in the trabecular meshwork. Exp Eye Res. 2008;86(4):543–61.PubMedCentralPubMedGoogle Scholar
  84. 84.
    Nolan M, Koga T, Walker L, McCarty R, Grybauskas A, Giovingo M, et al. sCD44 internalization in human trabecular meshwork cells. Invest Ophthalmol Vis Sci. 2013;54(1):592–601.PubMedCentralPubMedGoogle Scholar
  85. 85.
    Choi J, Miller AM, Nolan MJ, Yue BY, Thotz ST, Clark AF, et al. Soluble CD44 is cytotoxic to trabecular meshwork and retinal ganglion cells in vitro. Invest Ophthalmol Vis Sci. 2006;46(1):214–22.Google Scholar
  86. 86.
    Yue BYJT. Cellular mechanisms in the trabecular meshwork affecting the aqueous humor outflow pathway. In: Albert DM, Miller JW, editors. Albert and Jakobiec’s principles and practice of ophthalmology. 3rd ed. Oxford: Elsevier; 2007. p. 2457–74.Google Scholar
  87. 87.
    Tane N, Dhar S, Roy S, Pinheiro A, Shira A, Roy S. Effect of excess synthesis of extracellular matrix components by trabecular meshwork cells: possible consequence on aqueous outflow. Exp Eye Res. 2007;84(5):832–42.PubMedGoogle Scholar
  88. 88.
    Lutjen-Drecoll E, Rohen JW. Morphology of aqueous outflow pathways in normal and glaucomatous eyes. In: Ritch R, Shields MB, Krupin T, editors. The glaucomas. St. Louis: CV Mosby; 1996. p. 89–123.Google Scholar
  89. 89.
    Vittal V, Rose A, Gregory KE, Kelley MJ, Acott TS. Changes in gene expression by trabecular meshwork cells in response to mechanical stretching. Invest Ophthalmol Vis Sci. 2005;46(8):2857–68.PubMedGoogle Scholar
  90. 90.
    Gottanka J, Chan D, Eichhorn M, Lutjen-Drecoll E, Ethier CR. Effects of TGF-β2 in perfused human eyes. Invest Ophthalmol Vis Sci. 2004;45(1):153–8.PubMedGoogle Scholar
  91. 91.
    Shepard AR, Millar JC, Pang IH, Jacobson N, Wang WH, Clark AF. Adenoviral gene transfer of active human transforming growth factor-{beta}2 elevates intraocular pressure and reduces outflow facility in rodent eyes. Invest Ophthalmol Vis Sci. 2010;51(4):2067–76.PubMedGoogle Scholar
  92. 92.
    Kelley MJ, Rose AY, Song K, Chen Y, Bradley JM, Rookhuizen D, et al. Synergism of TNF and IL-1 in the induction of matrix metalloproteinases-3 in the trabecular meshwork. Invest Ophthalmol Vis Sci. 2007;48(6):2634–43.PubMedGoogle Scholar
  93. 93.
    Tan JCH, Peters DM, Kaufman PL. Recent developments in understanding the pathophysiology of elevated intraocular pressure. Curr Opin Ophthalmol. 2006;17(2):168–74.PubMedGoogle Scholar
  94. 94.
    Tian B, Geiger B, Epstein DL, Kaufman PL. Cytoskeletal involvement in the regulation of aqueous humor outflow. Invest Ophthalmol Vis Sci. 2000;41(3):619–23.PubMedGoogle Scholar
  95. 95.
    Rao PV, Epstein DL. Rho GTPase/Rho kinase inhibition as a novel target for the treatment of glaucoma. BioDrugs. 2007;21(3):167–77.PubMedGoogle Scholar
  96. 96.
    Olson L, Humpel C. Growth factors and cytokines/chemokines as surrogate biomarkers in cerebrospinal fluid and blood for diagnosing Alzheimer’s disease and mild cognitive impairment. Exp Gerontol. 2010;45(1):41–6.PubMedGoogle Scholar
  97. 97.
    Giovingo M, Nolan M, McCarty R, Pang I-H, Clark AF, Beverley RM, et al. sCD44 overexpression increases intraocular pressure and aqueous outflow resistance. Molecular Vision. 2013;19:2151–64.Google Scholar
  98. 98.
    Knepper PA, Miller AM, Wertz CJ, Choi J, Nolan MJ, Goossens W, et al. Hypophosphorylation of aqueous humor sCD44 and primary open angle glaucoma. Invest Ophthalmol Vis Sci. 2005;46(8):2829–37.PubMedGoogle Scholar
  99. 99.
    Alvarado JA, Murphy CG, Polansky JR, Juster R. Age-related changes in trabecular meshwork cellularity. Invest Ophthalmol Vis Sci. 1981;21(5):714–27.PubMedGoogle Scholar
  100. 100.
    Alvarado J, Murphy C, Juster R. Trabecular meshwork cellularity in primary open-angle glaucoma and non-glaucomatous normals. Ophthalmology. 1984;91(6):564–79.PubMedGoogle Scholar
  101. 101.
    Sacca SC, Izzotti A, Rossi P, Traverso C. Glaucomatous outflow pathway and oxidative stress. Exp Eye Res. 2007;84(3):389–99.PubMedGoogle Scholar
  102. 102.
    De La Paz MA, Epstein DL. Effect of age on superoxide dismutase activity of human trabecular meshwork. Invest Ophthalmol Vis Sci. 1996;37(9):1849–53.Google Scholar
  103. 103.
    Abu-Amero KK, Morales J, Bosley TM. Mitochondrial abnormalities in patients with primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2006;47(6):2533–41.PubMedGoogle Scholar
  104. 104.
    Izotti A, Saccà SC, Longobardi M, Cartiglia C. Mitochondrial damage in the trabecular meshwork of patients with glaucoma. Arch Ophthalmol. 2010;128(6):724–30.Google Scholar
  105. 105.
    Schaefer EJ, Bongard V, Beiser AS, Lamon-Fava S, Robins SJ, Au R, et al. Plasma phosphatidylcholine docosahexaenoic acid content and risk of dementia and Alzheimer disease: the Framingham Heart Study. Arch Neurol. 2006;63(11):1545–50.PubMedGoogle Scholar
  106. 106.
    Lee JY, Plakidas A, Lee WH, Heikkinen A, Chanmugam P, Bray G, et al. Differential modulation of Toll-like receptors by fatty acids: preferential inhibition by n-3 polyunsaturated fatty acids. J Lipid Res. 2003;44(3):479–86.PubMedGoogle Scholar
  107. 107.
    Chapkin RS, Kim W, Lupton JR, McMurray DN. Dietary docosahexaenoic and eicosapentaenoic acid: emerging mediators of inflammation. Prostaglandins Leukot Essent Fatty Acids. 2009;81(2–3):187–91.PubMedCentralPubMedGoogle Scholar
  108. 108.
    Taylor KR, Yamasaki K, Radek KA, Di Nardo A, Goodarzi H, Golenbock D, et al. Recognition of hyaluronan released in sterile injury involves a unique receptor complex dependent on Toll-like receptor 4, CD44, and MD-2. J Biol Chem. 2007;282(25):18265–75.PubMedGoogle Scholar
  109. 109.
    Beutler BA. TLRs and innate immunity. Blood. 2009;113(7):1399–407.PubMedCentralPubMedGoogle Scholar
  110. 110.
    Alaish SM, Yager DR, Diegelmann RF, Cohen IK. Hyaluronic acid metabolism in keloid fibroblasts. J Pediatr Surg. 1995;30:949–52.PubMedGoogle Scholar
  111. 111.
    Kasiyama K, Mitsutake N, Matsuse M, Ogi T, Saenko VA, Ujifuku A, Hirano A, Yamashita S. miR-196a downregulation increases the expression of Type I and III collagens in keloid fibroblasts. J Invest Dermatol. 2012;132(6):1597–604.Google Scholar
  112. 112.
    Liu Y, Yang D, Xiao Z, Zhang M. miRNA expression profiles in keloid tissue and corresponding normal skin tissue. Aesthetic Plast Surg. 2012;36(1):193–201.PubMedGoogle Scholar
  113. 113.
    Jeyapalan Z, Deng Z, Shatseva T, Fang L, He C, Yang BB. Expression of CD44 3′-untranslated region regulates endogenous microRNA functions in tumorigenesis and angiogenesis. Nucleic Acids Res. 2009;39:3026–41.Google Scholar
  114. 114.
    Acharya PS, Majumdar S, Jacob M, Hayden J, Mrass P, Weninger W, et al. Fibroblast migration is mediated by CD44-dependent TGFβ activation. J Cell Sci. 2008;121:1393–402.PubMedGoogle Scholar
  115. 115.
    Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN, et al. Nomenclature of monocytes and dendritic cells in blood. Blood. 2010;116(16):e74–80.PubMedGoogle Scholar
  116. 116.
    Ziegler-Heitbrock HW. Heterogeneity of human blood monocytes: the CD14+ CD16+ subpopulation. Immunol Today. 1996;17(9):424–8.PubMedGoogle Scholar
  117. 117.
    Ellery PJ, Tippett E, Chiu YL, Paukovics G, Cameron PU, Solomon A, et al. The CD16+ monocyte subset is more permissive to infection and preferentially harbors HIV-1 in vivo. J Immunol. 2007;178(10):6581–9.PubMedGoogle Scholar
  118. 118.
    Feng AL, Zhu JK, Sun JT, Yang MX, Neckenig MR, Wang XW, et al. CD16+ monocytes in breast cancer patients: expanded by monocyte chemoattractant protein-1 and may be useful for early diagnosis. Clin Exp Immunol. 2011;164:57–65.PubMedCentralPubMedGoogle Scholar
  119. 119.
    Urra X, Villamor N, Amaro S, Gómez-Choco M, Obach V, Oleaga L, et al. Monocyte subtypes predict clinical course and prognosis in human stroke. J Cereb Blood Flow Metab. 2009;29(5):994–1002.PubMedGoogle Scholar
  120. 120.
    Sen A, Chowdhury IH, Mukhopadhyay D, Paine SK, Mukherjee A, Mondal LK, et al. Increased toll-like receptor-2 expression on nonclassic CD16+ monocytes from patients with inflammatory stage of Eales’ disease. Invest Ophthalmol Vis Sci. 2011;52:6940–8.PubMedGoogle Scholar
  121. 121.
    Howell GR, Soto I, Zhu X, Ryan M, Macalinao DG, Sousa GL, et al. Radiation treatment inhibits monocyte entry into the optic nerve head and prevents neuronal damage in a mouse model of glaucoma. J Clin Invest. 2012;122(4):1246–61.PubMedCentralPubMedGoogle Scholar
  122. 122.
    Eshkar Sebban L, Ronen D, Levartovsky D, Elkayam O, Caspi D, Aamar S, et al. The involvement of CD44 and its novel ligand galectin-8 in apoptotic regulation of autoimmune inflammation. J Immunol. 2007;179(2):1225–35.PubMedGoogle Scholar
  123. 123.
    Balistreri CR, Colonna-Romano G, Lio D, Candore G, Caruso C. TLR4 polymorphisms and ageing: implications for the pathophysiology of age-related diseases. J Clin Immunol. 2009;29(4):406–15.PubMedGoogle Scholar
  124. 124.
    Zhang J, Sokal I, Peskind ER, Quinn JF, Jankovic J, Kenney C, et al. CSF multianalyte profile distinguishes Alzheimer and Parkinson diseases. Am J Clin Pathol. 2008;129(4):526–9.PubMedCentralPubMedGoogle Scholar
  125. 125.
    Alvarado JA, Alvarado RG, Yeh RF, Franse-Carman L, Marcellino GR, Brownstein MJ. A new insight into the cellular regulation of aqueous outflow: how trabecular meshwork endothelial cells drive a mechanism that regulates the permeability of Schlemm’s canal endothelial cells. Br J Ophthalmol. 2005;89(11):1500–5.PubMedCentralPubMedGoogle Scholar
  126. 126.
    Alvarado JA, Katz LJ, Trivedi S, Shifera AS. Monocyte modulation of aqueous outflow and recruitment to the trabecular meshwork following selective laser trabeculoplasty. Arch Ophthalmol. 2010;128(6):731–7.PubMedGoogle Scholar
  127. 127.
    Park H, Park S, Oh Y, Park C. Nail bed hemorrhage: a clinical marker of optic disc hemorrhage in patients with glaucoma. Arch Ophthalmol. 2011;129(10):1299–304.PubMedGoogle Scholar
  128. 128.
    Cutolo M, Sulli A, Pizzorni C, Accardo S. Nailfold videocapillaroscopy assessment of microvascular damage in systemic sclerosis. J Rheumatol. 2000;27(1):155–60.PubMedGoogle Scholar
  129. 129.
    Redisch W, Messina EJ, Hughes G, McEwen C. Capillaroscopic observations in rheumatic diseases. Ann Rheum Dis. 1970;29:244–53.PubMedCentralPubMedGoogle Scholar
  130. 130.
    Tektonidou M, Kaskani E, Skopouli FN, Moutsopoulos HM. Microvascular abnormalities in Sjogren’s syndrome: nailfold capillaroscopy. Rheumatology. 1999;38:826–30.PubMedGoogle Scholar
  131. 131.
    Stevens CW, Aravind S, Das S, Davis RL. Pharmacological characterization of LPS and opioid interactions at the toll-like receptor 4. Br J Pharmacol. 2013;168(6):1421–9.PubMedCentralPubMedGoogle Scholar
  132. 132.
    Wagner EL, Grybauskas A, Burdi RA, Walker L, Yue B, Samples JR, Knepper PA. Naloxone as a neuroprotectant in glaucoma: its role in the TLR4 pathway and innate immunity. ARVO meeting E-Abstract: 3474, May 2012; Fort Lauderdale, FL.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Paul A. Knepper
    • 1
    • 2
    Email author
  • Algis Grybauskas
    • 3
  • Paulius V. Kuprys
    • 3
  • Kevin Skuran
    • 4
  • John R. Samples
    • 5
    • 6
    • 7
    • 8
  1. 1.Department of Ophthalmology and Visual SciencesUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Department of OphthalmologyNorthwestern University Medical SchoolChicagoUSA
  3. 3.Department of Ophthalmology and Visual SciencesUniversity of Illinois at ChicagoChicagoUSA
  4. 4.Department of Ophthalmology and Visual SciencesUniversity of IllinoisChicagoUSA
  5. 5.Department of SurgeryRocky Vista UniversityParkerUSA
  6. 6.Western Glaucoma FoundationPortlandUSA
  7. 7.Cornea Consultants of ColoradoLittletonUSA
  8. 8.The Eye ClinicPortlandUSA

Personalised recommendations