Therapeutic Ultrasound for Glaucoma (TUG)

  • Donald SchwartzEmail author


TUG is a new and novel method of treating glaucoma that offers a comfortable, repeatable means of decreasing intraocular pressure. It is easily performed and has been shown to have a significant additive effect when used as an adjunct to pharmaceutical agent or as an initial glaucoma treatment. Due to its ease of use, potential portability, and repeatable qualities, it has the potential for changing the way glaucoma is treated today. The stages of the development of the device and treatment method are described.


Intraocular Pressure Anterior Chamber Cataract Surgery Power Amplifier Ciliary Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

Video 12.1

Typical early TUG treatment (MPG 16460 kb)


  1. 1.
    Poley BJ, Lindstrom RL, Samuelson TW. Long-term effects of phacoemulsification with intraocular lens implantation in normotensive and ocular hypertensive eyes. J Cataract Refract Surg. 2008;34(5):735–42.PubMedCrossRefGoogle Scholar
  2. 2.
    Bowling B, Calladine D. Routine reduction of glaucoma medication following phacoemulsification. J Cataract Refract Surg. 2009;35(3):406–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Shingleton BJ, Laul A, Nagao K, Wolff B, O’Donoghue M, Eagan E, Flattem N, Desai-Bartoli S. Effect of phacoemulsification on intraocular pressure in eyes with pseudoexfoliation: single-surgeon series. J Cataract Refract Surg. 2008;34(11):1834–41.PubMedCrossRefGoogle Scholar
  4. 4.
    Pohjalainen T, Vesti E, Uusitalo RJ, Laatikainen L. Phacoemulsification and intraocular lens implantation in eyes with open-angle glaucoma. Acta Ophthalmol Scand. 2001;79(3):313–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Mierzejewski A, Eliks I, Kałuzny B, Zygulska M, Harasimowicz B, Kałuzny JJ. Cataract phacoemulsification and intraocular pressure in glaucoma patients. Klin Oczna. 2008;110(1–3):11–7.PubMedGoogle Scholar
  6. 6.
    Issa SA, Pacheco J, Mahmood U, Nolan J, Beatty S. A novel index for predicting intraocular pressure reduction following cataract surgery. Br J Ophthalmol. 2005;89:543–6. doi: 10.1136/bjo.2004.047662.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Radius RL, Schultz K, Sobocinski K, Schultz RO, Easom H. Pseudophakia and intraocular pressure. Am J Ophthalmol. 1984;97(6):738–42.PubMedGoogle Scholar
  8. 8.
    Silverman RH, Vogelsang B, Rondeau MJ, Coleman DJ. Therapeutic ultrasound for the treatment of glaucoma. Am J Ophthalmol. 1991;111(3):327–37. Erratum in: Am J Ophthalmol 1991;112(1):105.Google Scholar
  9. 9.
    Valtot F, Kopel J, Haut J. Treatment of glaucoma with high intensity focused ultrasound. Int Ophthalmol. 1989;13(1–2):167–70.PubMedCrossRefGoogle Scholar
  10. 10.
    Feril LB Jr., Kondo T, Tachibana K, Ogawa R, Ogawa K. Biological effects of ultrasound: sonomechanical mechanism, and its implications on therapy and biosafety. Therapeutic ultrasound: 5th international symposium on therapeutic ultrasound; 2006;829. New York.Available from:
  11. 11.
    Zhou L, Maruyama I, Li Y, Cheng EL, Yue BY. Integrin transduction expression of integrin receptors in the human trabecular meshwork. Curr Eye Res. 1999;19(5):395–402.PubMedCrossRefGoogle Scholar
  12. 12.
    Choi BH, Choi MH, Kwak MG, Min BH, Woo ZH, Park SR. Integrin transduction initiated by mechanical receptors of stretch activated channels mechanotransduction pathways of low-intensity ultrasound in C-28/I2 human chondrocyte cell line. Proc Inst Mech Eng H. 2007;221(5):527–35.PubMedCrossRefGoogle Scholar
  13. 13.
    Wang N, Chintala SK, Fini ME, Schuman JS. Ultrasound activates the TM ELAM-1/IL-1/NF-kappaB response: a potential mechanism for intraocular pressure reduction after phacoemulsification. Invest Ophthalmol Vis Sci. 2003;44(5):1977–81.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Bradley JM, Kelley MJ, Rose A, Acott TS. Signaling pathways used in trabecular matrix metalloproteinase response to mechanical stretch. Invest Ophthalmol Vis Sci. 2003;44(12):5174–81.PubMedCrossRefGoogle Scholar
  15. 15.
    Bradley JM, Kelley MJ, Zhu X, Anderssohn AM, Alexander JP, Acott TS. Effects of mechanical stretching on trabecular matrix metalloproteinases. Invest Ophthalmol Vis Sci. 2001;42(7):1505–13.PubMedGoogle Scholar
  16. 16.
    Prevent Blindness America. Available from:
  17. 17.
    Glaucoma Research Foundation. Available from:
  18. 18.
    Pradhan S, Wilkes M, Leffler CT, Pratt DC, Mahmood MA. Correlation of change in IOP with anterior chamber depth and angle after cataract surgery measured by anterior segment OCT. Poster presented at the American Society of Cataract and Refractive Surgery (ASCRS) meeting, San Francisco; 6 April 2009.Google Scholar
  19. 19.
    Floyd MS, Valentine JR, Olson RJ. Fluidics and heat generation of Alcon Infiniti and Legacy, Bausch & Lomb Millennium, and advanced medical optics sovereign phacoemulsification systems. Am J Ophthalmol. 2006;142(3):387–92.PubMedCrossRefGoogle Scholar
  20. 20.
    Polack PJ, Iwamoto T, Silverman RH, Driller J, Lizzi FL, Coleman DJ. Histologic effects of contact ultrasound for the treatment of glaucoma. Invest Ophthalmol Vis Sci. 1991;32(7):2136–42.PubMedGoogle Scholar
  21. 21.
    Valtot F, Kopel J, Le Mer Y. [Principles and histologic effects of the treatment of hypertension with focused high-intensity ultrasound]. Ophtalmologie. 1990;4(2):135–7.PubMedGoogle Scholar
  22. 22.
    Coleman DJ, Lizzi FL, Driller J, Rosado AL, Chang S, Iwamoto T, Rosenthal D. Therapeutic ultrasound in the treatment of glaucoma. I. Experimental model. Ophthalmology. 1985;92(3):339–46.PubMedCrossRefGoogle Scholar
  23. 23.
    Silverman RH, Vogelsang B, Rondeau MJ, Coleman DJ. Therapeutic ultrasound for the treatment of glaucoma. Am J Ophthalmol. 1991;111(3):327–37.PubMedGoogle Scholar
  24. 24.
    Coleman DJ, Lizzi FL, Silverman RH, Dennis Jr PH, Driller J, Rosado A, Iwamoto T. Therapeutic ultrasound. Ultrasound Med Biol. 1986;12(8):633–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Liton PB, Liu X, Challa P, Epstein DL, Gonzalez P. Induction of TGF-beta1 in the trabecular meshwork under cyclic mechanical stress. J Cell Physiol. 2005;205(3):364–71.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Liton PB, Luna C, Bodman M, Hong A, Epstein DL, Gonzalez P. Induction of IL-6 expression by mechanical stress in the trabecular meshwork. Biochem Biophys Res Commun. 2005;337(4):1229–36. Epub 2005 Oct 7.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Liton PB, Li G, Luna C, Gonzalez P, Epstein DL. Cross-talk between TGF-beta1 and IL-6 in human trabecular meshwork cells. Mol Vis. 2009;15:326–34. Epub 2009 Feb 11.PubMedCentralPubMedGoogle Scholar
  28. 28.
    Kalapesi FB, Tan JC, Coroneo MT. Stretch-activated channels: a mini-review. Are stretch-activated channels an ocular barometer. Clin Experiment Ophthalmol. 2005;33(2):210–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Sato Y, Matsuo T, Ohtsuki H. A novel gene (oculomedin) induced by mechanical stretching in human trabecular cells of the eye. Biochem Biophys Res Commun. 1999;259(2):349–51.PubMedCrossRefGoogle Scholar
  30. 30.
    Luna C, Li G, Liton PB, Epstein DL, Gonzalez P. Alterations in gene expression induced by cyclic mechanical stress in trabecular meshwork cells. Mol Vis. 2009;15:534–44. Epub 2009 Mar 11.PubMedCentralPubMedGoogle Scholar
  31. 31.
    Mozaffarieh M, Flammer J. A novel perspective on natural therapeutic approaches in glaucoma therapy. Expert Opin Emerg Drugs. 2007;12(2):195–8.PubMedCrossRefGoogle Scholar
  32. 32.
    WuDunn D. Mechanobiology of trabecular meshwork cells. Exp Eye Res. 2009;88(4):718–23. Epub 2008 Nov 24.PubMedCrossRefGoogle Scholar
  33. 33.
    Acott TS, Kelley MJ. Extracellular matrix in the trabecular meshwork. Exp Eye Res. 2008;86(4):543–61. Epub 2008 Jan 25.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Tamm ER, Fuchshofer R. What increases outflow resistance in primary open-angle glaucoma? Surv Ophthalmol. 2007;52 Suppl 2:S101–4.PubMedCrossRefGoogle Scholar
  35. 35.
    Kelley MJ, Rose A, Song K, Lystrup B, Samples JW, Acott TS. p38 MAP kinase pathway and stromelysin regulation in trabecular meshwork cells. Invest Ophthalmol Vis Sci. 2007;48(7):3126–37.PubMedCrossRefGoogle Scholar
  36. 36.
    Bradley JM, Anderssohn AM, Colvis CM, Parshley DE, Zhu XH, Ruddat MS, Samples JR, Acott TS. Mediation of laser trabeculoplasty-induced matrix metalloproteinase expression byIL-1_ and TNF_. Invest Ophthalmol Vis Sci. 2000;41:422–30.PubMedGoogle Scholar
  37. 37.
    Kelley MJ, Rose AY, Song K, Chen Y, Bradley JM, Rookhuizen D, Acott TS. Synergism of TNF and IL-1 in the induction of matrix metalloproteinase-3 in trabecular meshwork. Invest Ophthalmol Vis Sci. 2007;48(6):2634–43.PubMedCrossRefGoogle Scholar
  38. 38.
    Hosseini M, Rose AY, Song K, Bohan C, Alexander JP, Kelley MJ, Acott TS. IL-1 and TNF induction of matrix metalloproteinase-3 by c-Jun N-terminal kinase in trabecular meshwork. Invest Ophthalmol Vis Sci. 2006;47(4):1469–76.PubMedCrossRefGoogle Scholar
  39. 39.
    Pang IH, Hellberg PE, Fleenor DL, Jacobson N, Clark AF. Expression of matrix metalloproteinases and their inhibitors in human trabecular meshwork cells. Invest Ophthalmol Vis Sci. 2003;44(8):3485–93.PubMedCrossRefGoogle Scholar
  40. 40.
    Alexander JP, Acott TS. Involvement of the Erk-MAP kinase pathway in TNF alpha regulation of trabecular matrix metalloproteinases and TIMPs. Invest Ophthalmol Vis Sci. 2003;44(1):164–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Shearer T, Crosson CE. Activation of extracellular signal-regulated kinase in trabecular meshwork cells. Exp Eye Res. 2001;73(1):25–35.PubMedCrossRefGoogle Scholar
  42. 42.
    Samples JR, Alexander JP, Acott TS. Regulation of the levels of human trabecular matrix metalloproteinases and inhibitor by interleukin-1 and Dexamethasone. Invest Ophthalmol Vis Sci. 1993;34(12):3386–95.PubMedGoogle Scholar
  43. 43.
    Drews UW. Ultrasound treatment of glaucoma. Fortschr Ophthalmol. 1989;86(5):489–93.PubMedGoogle Scholar
  44. 44.
    Tarner IH, Müller-Ladner U, Uhlemann C, Lange U. The effect of mild whole-body hyperthermia on systemic levels of TNF-alpha, IL-1beta, and IL-6 in patients with ankylosing spondylitis. Clin Rheumatol. 2009;28(4):397–402.PubMedCrossRefGoogle Scholar
  45. 45.
    Xie X, Shao X, Gao F, Jin H, Zhou J, Du L, Zhang Y, Ouyang W, Wang X, Zhao L, Zhang X, Tang J. Effect of hyperthermia on invasion ability and TGF-β1 expression of breast carcinoma MCF-7 cells. Oncol Rep. 2011;25(6):1573–9. doi: 10.3892/or.2011.1240. Epub 2011 Mar 29.PubMedGoogle Scholar
  46. 46.
    Kramer G, Steiner GE, et al. Response to sublethal heat treatment of prostatic tumor cells and of prostatic tumor infiltrating T-cells. Prostate. 2004;58(2):109–20.PubMedCrossRefGoogle Scholar
  47. 47.
    Lee CT, Zhong L, Mace TA, Repasky EA. Elevation in body temperature to fever range enhances and prolongs subsequent responsiveness of macrophages to endotoxin challenge. PlosOne. 2012;7(1):e30077. Epub 2012 Jan 10.CrossRefGoogle Scholar
  48. 48.
    Morita Y, Oda S, Sadahiro T, Nakamura M, Oshima T, Otani S, Hirasawa H. The effects of body temperature control on cytokine production in a rat model of ventilator-induced lung injury. Cytokine. 2009;47(1):48–55. Epub 2009 May 8.PubMedCrossRefGoogle Scholar
  49. 49.
    Baronzio G, Gramaglia A, Fiorentini G. Hyperthermia and immunity. A brief overview. In Vivo. 2006;20(6A):689–95. Radiotherapy Hyperthermia Department, Policlinico di Monza, Via Amati, 111, 20052, Italy. Scholar
  50. 50.
    Atanackovic D, Pollok K, Faltz C, Boeters I, Jung R, Nierhaus A, Braumann KM, Hossfeld DK, Hegewisch-Becker S. Patients with solid tumors treated with high-temperature whole body hyperthermia show a redistribution of naive/memory T-cell subtypes. Am J Physiol Regul Integr Comp Physiol. 2006;290(3):R585–94. Epub 2005 Oct 27. Department of Oncology/Hematology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany. Scholar
  51. 51.
    Yamashita N, Hoshida S, Otsu K, Taniguchi N, Kuzuya T, Hori M. Involvement of cytokines in the mechanism of whole-body hyperthermia-induced cardioprotection. Circulation. 2000;102(4):452–7. First Department of Medicine, Osaka University Medical School and the Cardiovascular Division, Osaka, Japan.PubMedCrossRefGoogle Scholar
  52. 52.
    Robins HI, Grosen E, Katschinski DM, Longo W, Tiggelaar CL, Kutz M, Winawer J, Graziano F. Whole body hyperthermia induction of soluble tumor necrosis factor receptors: implications for rheumatoid diseases. J Rheumatol. 1999;26(12):2513–6.PubMedGoogle Scholar
  53. 53.
    Haveman J, Geerdink AG, Rodermond HM. Cytokine production after whole body and localized hyperthermia. Int J Hyperthermia. 1996;12(6):791–800.PubMedCrossRefGoogle Scholar
  54. 54.
    Katschinski DM, Wiedemann GJ, Longo W, d’Oleire FR, Spriggs D, Robins HI. Whole body hyperthermia cytokine induction: a review, and unifying hypothesis for myeloprotection in the setting of cytotoxic therapy. Cytokine Growth Factor Rev. 1999;10(2):93–7. University of Wisconsin, School of Medicine, Madison 53792, USA.PubMedCrossRefGoogle Scholar
  55. 55.
    Robins HI, Kutz M, Wiedemann GJ, Katschinski DM, Paul D, Grosen E, Tiggelaar CL, Spriggs D, Gillis W, d’Oleire F. Cytokine induction by 41.8 degrees C whole body hyperthermia. Cancer Lett. 1995;97(2):195–201. University of Wisconsin Clinical Science Center, Madison, USA.PubMedCrossRefGoogle Scholar
  56. 56.
    Shen RN, Hornback NB, Shidnia H, Wu B, Lu L, Broxmeyer HE. Whole body hyperthermia: a potent radioprotector in vivo. Int J Radiat Oncol Biol Phys. 1991;20(3):525–30. Dept. of Medicine (Hematology/Oncology), Indiana University School of Medicine, Indianapolis 46202.PubMedCrossRefGoogle Scholar
  57. 57.
    Issa SA, Pacheco J, Mahmood U, Nolan J, Beatty S. A novel index for predicting intraocular pressure reduction following cataract surgery. Br J Ophthalmol. 2005;89:543–6.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Altan C, Bayraktar S, Altan T, Eren H, Yilmaz OF. Anterior chamber depth, iridocorneal angle width, and intraocular pressure changes after uneventful phacoemulsification in eyes without glaucoma and with open iridocorneal angles. J Cataract Refract Surg. 2004;30(4):832–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Noecker RJ, Kramer TR. Comparison of the acute morphologic changes after selective laser trabeculoplasty and argon laser trabeculoplasty in human eye. Invest Ophthalmol Vis Sci. 1998;39:S472.Google Scholar
  60. 60.
    Chang IA, Nguyen UD. Thermal modeling of lesion growth with radiofrequency ablation devices. BioMed Eng OnLine. 2004;3:1–19.CrossRefGoogle Scholar
  61. 61.
    Takahashi S, Tanaka R, Watanabe M, Takahashi H, Kakinuma K, Suda T, Yamada M, Takahashi H. Effects of whole-body hyperthermia on the canine central nervous system. Int J Hyperthermia. 1999;15(3):203–16.PubMedCrossRefGoogle Scholar
  62. 62.
    Zhou Y-F. High intensity focused ultrasound in clinical tumor ablation. World J Clin Oncol. 2011;2(1):8–27.PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    van der Zee J. Heating the patient: a promising approach? Ann Oncol. 2002;13(8):1173–84.PubMedCrossRefGoogle Scholar
  64. 64.
    Falk MH, Issels RD. Hyperthermia in oncology. Int J Hyperthermia. 2001;17(1):1–18.PubMedCrossRefGoogle Scholar
  65. 65.
    Zhou AW, Giroux J, Mao AJ, Hutnik CM. Can preoperative anterior chamber angle width predict magnitude of intraocular pressure change after cataract surgery? Can J Ophthalmol. 2010;45(2):149–53.PubMedCrossRefGoogle Scholar
  66. 66.
    Shrivastava A, Singh K. The effect of cataract extraction on intraocular pressure. Curr Opin Ophthalmol. 2010;21(2):118–22.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of OphthalmologyLong Beach EyeCare AssociatesLong BeachUSA

Personalised recommendations