Gadd45 in Stress Signaling, Cell Cycle Control, and Apoptosis

  • Jesús M. Salvador
  • Joshua D. Brown-Clay
  • Albert J. FornaceJr.
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 793)

Abstract

The first identified Gadd45 gene, Gadd45a, encodes a ubiquitously expressed protein that is often induced by DNA damage and other stress signals associated with growth arrest and apoptosis. This protein and the other two members of this small gene family, Gadd45b and Gadd45g, have been implicated in a variety of the responses to cell injury including cell cycle checkpoints, apoptosis, and DNA repair. In vivo, many of the prominent roles for the Gadd45 proteins are associated with signaling mediated by p38 mitogen-activated protein kinases (MAPK). Gadd45 proteins can contribute to p38 activation either by activation of upstream kinase(s) or by direct interaction. In vivo, there are important tissue and cell-type-specific differences in the roles for Gadd45 in MAPK signaling. In addition to being p53-regulated, Gadd45a has been found to contribute to p53 activation via p38. Like other stress and signaling proteins, Gadd45 proteins show complex regulation and numerous effectors.

References

  1. Amanullah A, Azam N, Balliet A, Hollander C, Hoffman B, Fornace A, Liebermann D (2003) Cell signalling: cell survival and a Gadd45-factor deficiency. Nature 424:741, discussion 742CrossRefPubMedGoogle Scholar
  2. Amente S, Zhang J, Lavadera ML, Lania L, Avvedimento EV, Majello B (2011) Myc and PI3K/AKT signaling cooperatively repress FOXO3a-dependent PUMA and GADD45a gene expression. Nucleic Acids Res 39:9498–9507CrossRefPubMedGoogle Scholar
  3. Ashwell JD (2006) The many paths to p38 mitogen-activated protein kinase activation in the immune system. Nat Rev Immunol 6:532–540CrossRefPubMedGoogle Scholar
  4. Barreto G, Schafer A, Marhold J, Stach D, Swaminathan SK, Handa V, Doderlein G, Maltry N, Wu W, Lyko F, Niehrs C (2007) Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature 445:671–675CrossRefPubMedGoogle Scholar
  5. Brown-Clay JD, Fornace AJ Jr (2012) Gadd45. In: Choi S (ed) Encyclopedia of signaling molecules. Springer, New YorkGoogle Scholar
  6. Bulavin DV, Fornace AJ Jr (2004) p38 MAP kinase’s emerging role as a tumor suppressor. Adv Cancer Res 92:95–118CrossRefPubMedGoogle Scholar
  7. Bulavin DV, Kovalsky O, Hollander MC, Fornace AJ Jr (2003) Loss of oncogenic H-ras-induced cell cycle arrest and p38 mitogen-activated protein kinase activation by disruption of Gadd45a. Mol Cell Biol 23:3859–3871CrossRefPubMedGoogle Scholar
  8. Carrier F, Georgel PT, Pourquier P, Blake M, Kontny HU, Antinore MJ, Gariboldi M, Myers TG, Weinstein J, Pommier Y, Fornace AJ Jr (1999) Gadd45, a p53-responsive stress protein, modifies DNA accessibility on damaged chromatin. Mol Cell Biol 19:1673–1685PubMedGoogle Scholar
  9. Chang Q, Bhatia D, Zhang Y, Meighan T, Castranova V, Shi X, Chen F (2007) Incorporation of an internal ribosome entry site-dependent mechanism in arsenic-induced GADD45 alpha expression. Cancer Res 67:6146–6154CrossRefPubMedGoogle Scholar
  10. Cho HJ, Park SM, Hwang EM, Baek KE, Kim IK, Nam IK, Im MJ, Park SH, Bae S, Park JY, Yoo J (2010) Gadd45b mediates Fas-induced apoptosis by enhancing the interaction between p38 and retinoblastoma tumor suppressor. J Biol Chem 285:25500–25505CrossRefPubMedGoogle Scholar
  11. Cretu A, Sha X, Tront J, Hoffman B, Liebermann DA (2009) Stress sensor Gadd45 genes as therapeutic targets in cancer. Cancer Ther 7:268–276PubMedGoogle Scholar
  12. Fornace AJJ, Alamo IJ, Hollander MC (1988) DNA damage-inducible transcripts in mammalian cells. Proc Natl Acad Sci USA 85:8800–8804CrossRefPubMedGoogle Scholar
  13. Fornace AJ Jr, Nebert DW, Hollander MC, Luethy JD, Papathanasiou M, Fargnoli J, Holbrook NJ (1989) Mammalian genes coordinately regulated by growth arrest signals and DNA-damaging agents. Mol Cell Biol 9:4196–4203PubMedGoogle Scholar
  14. Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, Ellenberger T (2006) DNA repair and mutagenesis. ASM, Washington, DCGoogle Scholar
  15. Gao M, Guo N, Huang C, Song L (2009) Diverse roles of GADD45alpha in stress signaling. Curr Protein Pept Sci 10:388–394CrossRefPubMedGoogle Scholar
  16. Guo W, Dong Z, Guo Y, Chen Z, Kuang G, Yang Z (2013a) Methylation-mediated repression of GADD45A and GADD45G expression in gastric cardia adenocarcinoma. Int J Cancer. PMID: 23616123Google Scholar
  17. Guo W, Zhu T, Dong Z, Cui L, Zhang M, Kuang G (2013b) Decreased expression and aberrant methylation of Gadd45G is associated with tumor progression and poor prognosis in esophageal squamous cell carcinoma. Clin Exp Metastasis. PMID: 23793925Google Scholar
  18. Gierl MS, Gruhn WH, von Seggern A, Maltry N, Niehrs C (2012) GADD45G functions in male sex determination by promoting p38 signaling and Sry expression. Dev Cell 23:1032–1042CrossRefPubMedGoogle Scholar
  19. Hartman AR, Ford JM (2002) BRCA1 induces DNA damage recognition factors and enhances nucleotide excision repair. Nat Genet 32:180–184. PMID: 12195423Google Scholar
  20. Hildesheim J, Fornace AJ Jr (2004) The dark side of light: the damaging effects of UV rays and the protective efforts of MAP kinase signaling in the epidermis. DNA Repair (Amst) 3:567–580CrossRefGoogle Scholar
  21. Hildesheim J, Bulavin DV, Anver MR, Alvord WG, Hollander MC, Vardanian L, Fornace AJ Jr (2002) Gadd45a protects against UV irradiation-induced skin tumors, and promotes apoptosis and stress signaling via MAPK and p53. Cancer Res 62:7305–7315PubMedGoogle Scholar
  22. Hildesheim J, Belova GI, Tyner SD, Zhou X, Vardanian L, Fornace AJJ (2004) Gadd45a regulates matrix metalloproteinases by suppressing DeltaNp63alpha and beta-catenin via p38 MAP kinase and APC complex activation. Oncogene 23:1829–1837CrossRefPubMedGoogle Scholar
  23. Hildesheim J, Salvador JM, Hollander MC, Fornace AJ Jr (2005) Casein kinase 2- and protein kinase A-regulated adenomatous polyposis coli and {beta}-catenin cellular localization is dependent on p38 MAPK. J Biol Chem 280:17221–17226CrossRefPubMedGoogle Scholar
  24. Hollander MC, Fornace AJ Jr (2002) Genomic instability, centrosome amplification, cell cycle checkpoints and Gadd45a. Oncogene 21:6228–6233CrossRefPubMedGoogle Scholar
  25. Hollander MC, Sheikh MS, Bulavin D, Lundren K, Augeri-Henmueller L, Shehee R, Molinaro T, Kim K, Tolosa E, Ashwell JD, Rosenberg MD, Zhan Q, Fernández-Salguero PM, Morgan WF, Deng CX, Fornace AJ Jr (1999) Genomic instability in Gadd45a-deficient mice. Nat Genet 23:176–184CrossRefPubMedGoogle Scholar
  26. Hollander MC, Kovalsky O, Salvador JM, Kim KE, Patterson AD, Hairnes DC, Fornace AJ Jr (2001) DMBA carcinogenesis in Gadd45a-null mice is associated with decreased DNA repair and increased mutation frequency. Cancer Res 61:2487–2491PubMedGoogle Scholar
  27. Hollander MC, Philburn RT, Patterson AD, Velasco-Miguel S, Friedberg EC, Linnoila RI, Fornace AJJ (2005) Deletion of XPC leads to lung tumors in mice and is associated with early events in human lung carcinogenesis. Proc Natl Acad Sci USA 102:13200–13205CrossRefPubMedGoogle Scholar
  28. Husain A, He G, Venkatraman ES, Spriggs DR (1998) BRCA1 up-regulation is associated with repair-mediated resistance to cis-diamminedichloroplatinum(II). Cancer Res 58:1120–1123. PMID: 9515792Google Scholar
  29. Ijiri K, Zerbini LF, Peng H, Correa RG, Lu B, Walsh N, Zhao Y, Taniguchi N, Huang XL, Otu H, Wang H, Wang JF, Komiya S, Ducy P, Rahman MU, Flavell RA, Gravallese EM, Oettgen P, Libermann TA, Goldring MB (2005) A novel role for GADD45beta as a mediator of MMP-13 gene expression during chondrocyte terminal differentiation. J Biol Chem 280:38544–38555CrossRefPubMedGoogle Scholar
  30. Jackman J, Alamo I, Fornace AJ Jr (1994) Genotoxic stress confers preferential and coordinate mRNA stability on the five gadd genes. Cancer Res 54:5656–5662PubMedGoogle Scholar
  31. Jinawath N, Vasoontara C, Yap KL, Thiaville MM, Nakayama K, Wang TL, Shih IM (2009) NAC-1, a potential stem cell pluripotency factor, contributes to paclitaxel resistance in ovarian cancer through inactivating Gadd45 pathway. Oncogene 28:1941–1948CrossRefPubMedGoogle Scholar
  32. Jirmanova L, Jankovic D, Fornace AJJ, Ashwell JD (2007) Gadd45alpha regulates p38-dependent dendritic cell cytokine production and Th1 differentiation. J Immunol 178:4153–4158PubMedGoogle Scholar
  33. Johnen H, González-Silva L, Carramolino L, Flores JM, Torres M, Salvador JM (2013) Gadd45g is essential for primary sex determination, male fertility and testis development. PLoS One 8(3):e58751CrossRefPubMedGoogle Scholar
  34. Ju S, Zhu Y, Liu L, Dai S, Li C, Chen E, He Y, Zhang X, Lu B (2009) Gadd45b and Gadd45g are important for anti-tumor immune responses. Eur J Immunol 39:3010–3018CrossRefPubMedGoogle Scholar
  35. Jung N, Yi YW, Kim D, Shong M, Hong SS, Lee HS, Bae I (2000) Regulation of Gadd45gamma expression by C/EBP. Eur J Biochem 267:6180–6187CrossRefPubMedGoogle Scholar
  36. Jung HJ, Kim EH, Mun JY, Park S, Smith ML, Han SS, Seo YR (2007) Base excision DNA repair defect in Gadd45a-deficient cells. Oncogene 26:7517–7525CrossRefPubMedGoogle Scholar
  37. Karger S, Weidinger C, Krause K, Sheu SY, Aigner T, Gimm O, Schmid KW, Dralle H, Fuhrer D (2009) FOXO3a: a novel player in thyroid carcinogenesis? Endocr Relat Cancer 16:189–199CrossRefPubMedGoogle Scholar
  38. Kastan MB, Zhan Q, el-Deiry WS, Carrier F, Jacks T, Walsh WV, Plunkett BS, Vogelstein B, Fornace AJJ (1992) A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71:587–597CrossRefPubMedGoogle Scholar
  39. Kaufmann LT, Gierl MS, Niehrs C (2011) Gadd45a, Gadd45b and Gadd45g expression during mouse embryonic development. Gene Expr Patterns 11:465–470CrossRefPubMedGoogle Scholar
  40. Kearsey JM, Coates PJ, Prescott AR, Warbrick E, Hall PA (1995) Gadd45 is a nuclear cell cycle regulated protein which interacts with p21Cip1. Oncogene 11:1675–1683PubMedGoogle Scholar
  41. Kodama S, Negishi M (2011) Pregnane X receptor PXR activates the GADD45beta gene, eliciting the p38 MAPK signal and cell migration. J Biol Chem 286:3570–3578CrossRefPubMedGoogle Scholar
  42. Lal A, Gorospe M (2006) Egad, more forms of gene regulation: the gadd45a story. Cell Cycle 5:1422–1425CrossRefPubMedGoogle Scholar
  43. Lee HY, Youn SW, Kim JY, Park KW, Hwang CI, Park WY, Oh BH, Park YB, Walsh K, Seo JS, Kim HS (2008) FOXO3a turns the tumor necrosis factor receptor signaling towards apoptosis through reciprocal regulation of c-Jun N-terminal kinase and NF-kappaB. Arterioscler Thromb Vasc Biol 28:112–120. PMID: 18032780Google Scholar
  44. Li S, Ting NS, Zheng L, Chen PL, Ziv Y, Shiloh Y, Lee EY, Lee WH (2000) Functional link of BRCA1 and ataxia telangiectasia gene product in DNA damage response. Nature 406:210–215. PMID: 10910365Google Scholar
  45. Li Y, Zhao M, Yin H, Gao F, Wu X, Luo Y, Zhao S, Zhang X, Su Y, Hu N, Long H, Richardson B, Lu Q (2010) Overexpression of the growth arrest and DNA damage-induced 45alpha gene contributes to autoimmunity by promoting DNA demethylation in lupus T cells. Arthritis Rheum 62:1438–1447CrossRefPubMedGoogle Scholar
  46. Lin CR, Yang CH, Huang CE, Wu CH, Chen YS, Sheen-Chen SM, Huang HW, Chen KH (2011) GADD45A protects against cell death in dorsal root ganglion neurons following peripheral nerve injury. J Neurosci Res 89:689–699CrossRefPubMedGoogle Scholar
  47. Liu B, Suyeoka G, Papa S, Franzoso G, Neufeld AH (2009) Growth arrest and DNA damage protein 45b (Gadd45b) protects retinal ganglion cells from injuries. Neurobiol Dis 33:104–110CrossRefPubMedGoogle Scholar
  48. Lu B (2006) The molecular mechanisms that control function and death of effector CD4+ T cells. Immunol Res 36:275–282CrossRefPubMedGoogle Scholar
  49. Maekawa T, Sano Y, Shinagawa T, Rahman Z, Sakuma, T, Nomura S, Licht JD, Ishii S (2008) ATF-2 controls transcription of Maspin and GADD45 alpha genes independently from p53 to suppress mammary tumors. Oncogene 27:1045–1054. PMID: 17700520Google Scholar
  50. Ma DK, Guo JU, Ming GL, Song H (2009) DNA excision repair proteins and Gadd45 as molecular players for active DNA demethylation. Cell Cycle 8:1526–1531CrossRefPubMedGoogle Scholar
  51. Mita H, Tsutsui J, Takekawa M, Witten EA, Saito H (2002) Regulation of MTK1/MEKK4 kinase activity by its N-terminal autoinhibitory domain and GADD45 binding. Mol Cell Biol 22:4544–4555CrossRefPubMedGoogle Scholar
  52. Na YK, Lee SM, Hong HS, Kim JB, Park JY, Kim DS (2010) Hypermethylation of growth arrest DNA-damage-inducible gene 45 in non-small cell lung cancer and its relationship with clinicopathologic features. Mol Cells 30:89–92CrossRefPubMedGoogle Scholar
  53. Notas G, Alexaki VI, Kampa M, Pelekanou V, Charalampopoulos I, Sabour-Alaoui S, Pediaditakis I, Dessirier V, Gravanis A, Stathopoulos EN, Tsapis A, Castanas E (2012) APRIL binding to BCMA activates a JNK2-FOXO3-GADD45 pathway and induces a G2/M cell growth arrest in liver cells. J Immunol 189:4748–4758CrossRefPubMedGoogle Scholar
  54. Park MA, Seok YJ, Jeong G, Lee JS (2008) SUMO1 negatively regulates BRCA1-mediated transcription, via modulation of promoter occupancy. Nucleic Acids Res 36:263–283. PMID: 18025037Google Scholar
  55. Papa S, Zazzeroni F, Fu YX, Bubici C, Alvarez K, Dean K, Christiansen PA, Anders RA, Franzoso G (2008) Gadd45beta promotes hepatocyte survival during liver regeneration in mice by modulating JNK signaling. J Clin Invest 118:1911–1923CrossRefPubMedGoogle Scholar
  56. Papathanasiou MA, Kerr NC, Robbins JH, McBride OW, Alamo IJ, Barrett SF, Hickson ID, Fornace AJJ (1991) Induction by ionizing radiation of the gadd45 gene in cultured human cells: lack of mediation by protein kinase C. Mol Cell Biol 11:1009–1016PubMedGoogle Scholar
  57. Paruthiyil S, Cvoro A, Tagliaferri M, Cohen I, Shtivelman E, Leitman DC (2011) Estrogen receptor beta causes a G2 cell cycle arrest by inhibiting CDK1 activity through the regulation of cyclin B1, GADD45A, and BTG2. Breast Cancer Res Treat 129(3):777–784CrossRefPubMedGoogle Scholar
  58. Passos JF, Nelson G, Wang C, Richter T, Simillion C, Proctor CJ, Miwa S, Olijslagers S, Hallinan J, Wipat A, Saretzki G, Rudolph KL, Kirkwood TB, von Zglinicki T (2010) Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol Syst Biol 6:347CrossRefPubMedGoogle Scholar
  59. Reinhardt HC, Hasskamp P, Schmedding I, Morandell S, van Vugt MA, Wang X, Linding R, Ong SE, Weaver D, Carr SA, Yaffe MB (2010) DNA damage activates a spatially distinct late cytoplasmic cell-cycle checkpoint network controlled by MK2-mediated RNA stabilization. Mol Cell 40:34–49CrossRefPubMedGoogle Scholar
  60. Perugini M, Iarossi DG, Kok CH, Cummings N, Diakiw SM, Brown AL, Danner S, Bardy P, Bik To L, Wei AH, Lewis ID, D’Andrea RJ (2013) GADD45A methylation predicts poor overall survival in acute myeloid leukemia and is associated with IDH1/2 and DNMT3A mutations. Leukemia 27:1588–1592. PMID: 23187294Google Scholar
  61. Salvador JM, Hollander MC, Nguyen AT, Kopp JB, Barisoni L, Moore JK, Ashwell JD, Fornace AJ Jr (2002) Mice lacking the p53-effector gene Gadd45a develop a lupus-like syndrome. Immunity 16:499–508CrossRefPubMedGoogle Scholar
  62. Salvador JM, Mittelstadt PR, Belova GI, Fornace AJ Jr, Ashwell JD (2005a) The autoimmune suppressor Gadd45alpha inhibits the T cell alternative p38 activation pathway. Nat Immunol 6:396–402CrossRefPubMedGoogle Scholar
  63. Salvador JM, Mittelstadt PR, Guszczynski T, Copeland TD, Yamaguchi H, Appella E, Fornace AJ Jr, Ashwell JD (2005b) Alternative p38 activation pathway mediated by T cell receptor-proximal tyrosine kinases. Nat Immunol 6:390–395CrossRefPubMedGoogle Scholar
  64. Schmitz KM, Schmitt N, Hoffmann-Rohrer U, Schafer A, Grummt I, Mayer C (2009) TAF12 recruits Gadd45a and the nucleotide excision repair complex to the promoter of rRNA genes leading to active DNA demethylation. Mol Cell 33:344–353CrossRefPubMedGoogle Scholar
  65. Sen GL, Reuter JA, Webster DE, Zhu L, Khavari PA (2010) DNMT1 maintains progenitor function in self-renewing somatic tissue. Nature 463:563–567CrossRefPubMedGoogle Scholar
  66. Sengupta A, Molkentin JD, Paik JH, DePinho RA,Yutzey KE (2011) FoxO transcription factors promote cardiomyocyte survival upon induction of oxidative stress. J Biol Chem 286:7468–7478. PMID: 21159781Google Scholar
  67. Shao S, Wang Y, Jin S, Song Y, Wang X, Fan W, Zhao Z, Fu M, Tong T, Dong L, Fan F, Xu N, Zhan Q (2006) Gadd45a interacts with aurora-A and inhibits its kinase activity. J Biol Chem 281:28943–28950CrossRefPubMedGoogle Scholar
  68. Smith ML, Chen IT, Zhan Q, Bae I, Chen CY, Gilmer TM, Kastan MB, O’Connor PM, Fornace AJJ (1994) Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen. Science 266:1376–1380CrossRefPubMedGoogle Scholar
  69. Smith ML, Ford JM, Hollander MC, Bortnick RA, Amundson SA, Seo YR, Deng CX, Hanawalt PC, Fornace AJ Jr (2000) p53-mediated DNA repair responses to UV radiation: studies of mouse cells lacking p53, p21, and/or gadd45 genes. Mol Cell Biol 20:3705–3714CrossRefPubMedGoogle Scholar
  70. Snyder AR, Morgan WF (2004) Gene expression profiling after irradiation: clues to understanding acute and persistent responses? Cancer Metastasis Rev 23:259–268CrossRefPubMedGoogle Scholar
  71. Song L, Li J, Zhang D, Liu ZG, Ye J, Zhan Q, Shen HM, Whiteman M, Huang C (2006) IKKbeta programs to turn on the GADD45alpha-MKK4-JNK apoptotic cascade specifically via p50 NF-kappaB in arsenite response. J Cell Biol 175:607–617CrossRefPubMedGoogle Scholar
  72. Takekawa M, Saito H (1998) A family of stress-inducible GADD45-like proteins mediate activation of the stress-responsive MTK1/MEKK4 MAPKKK. Cell 95:521–530CrossRefPubMedGoogle Scholar
  73. Tong T, Ji J, Jin S, Li X, Fan W, Song Y, Wang M, Liu Z, Wu M, Zhan Q (2005) Gadd45a expression induces Bim dissociation from the cytoskeleton and translocation to mitochondria. Mol Cell Biol 25:4488–4500CrossRefPubMedGoogle Scholar
  74. Tran H, Brunet A, Grenier JM, Datta SR, Fornace AJ Jr, DiStefano PS, Chiang LW, Greenberg ME (2002) DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science 296:530–534CrossRefPubMedGoogle Scholar
  75. Tront JS, Willis A, Huang Y, Hoffman B, Liebermann DA (2013) Gadd45a levels in human breast cancer are hormone receptor dependent. J Transl Med 11:131Google Scholar
  76. Wang XW, Zhan Q, Coursen JD, Khan MA, Kontny HU, Yu L, Hollander MC, O’Connor PM, Fornace AJJ, Harris CC (1999) GADD45 induction of a G2/M cell cycle checkpoint. Proc Natl Acad Sci USA 96:3706–3711CrossRefPubMedGoogle Scholar
  77. Wang XW, Wang RH, Li W, Xu X, Hollander C, Fornace A, Deng C (2004) Genetic interactions between Brca1 and Gadd45a in centrosome duplication, genetic stability and neural tube closure. J Biol Chem 279:29606–29614CrossRefPubMedGoogle Scholar
  78. Wang L, Xiao X, Li D, Chi Y, Wei P, Wang Y, Ni S, Tan C, Zhou, X, Du X (2012) Abnormal expression of GADD45B in human colorectal carcinoma. J Transl Med 10:215. PMID: 23110778Google Scholar
  79. Warr N, Carre GA, Siggers P, Faleato JV, Brixey R, Pope M, Bogani D, Childers M, Wells S, Scudamore CL, Tedesco M, Del Barco BI, Nebreda AR, Trainor PA, Greenfield A (2012) Gadd45gamma and Map3k4 interactions regulate mouse testis determination via p38 MAPK-mediated control of Sry expression. Dev Cell 23:1020–1031CrossRefPubMedGoogle Scholar
  80. Weinstein JN, Myers TG, O’Connor PM, Friend SH, Fornace AJJ, Kohn KW, Fojo T, Bates SE, Rubinstein LV, Anderson NL, Buolamwini JK, van Osdol WW, Monks AP, Scudiero DA, Sausville EA, Zaharevitz DW, Bunow B, Viswanadhan VN, Johnson GS, Wittes RE, Paull KD (1997) An information-intensive approach to the molecular pharmacology of cancer. Science 275:343–349CrossRefPubMedGoogle Scholar
  81. Wu J, Lu LY, Yu X (2010) The role of BRCA1 in DNA damage response. Protein Cell 1:117–123. PMID: 21203981Google Scholar
  82. Yamamoto Y, Moore R, Flavell RA, Lu B, Negishi M (2010) Nuclear receptor CAR represses TNFalpha-induced cell death by interacting with the anti-apoptotic GADD45B. PLoS One 5:e10121CrossRefPubMedGoogle Scholar
  83. Yang Z, Song L, Huang C (2009) Gadd45 proteins as critical signal transducers linking NF-kappaB to MAPK cascades. Curr Cancer Drug Targets 9:915–930CrossRefPubMedGoogle Scholar
  84. Yang F, Zhang W, Li D, Zhan Q (2013) Gadd45a suppresses tumor angiogenesis via inhibition of the mTOR/STAT3 pathway. J Biol Chem 288(9):6552–6560CrossRefPubMedGoogle Scholar
  85. Yoo J, Ghiassi M, Jirmanova L, Balliet AG, Hoffman B, Fornace AJ Jr, Liebermann DA, Bottinger EP, Roberts AB (2003) Transforming growth factor-beta-induced apoptosis is mediated by Smad-dependent expression of GADD45b through p38 activation. J Biol Chem 278:43001–43007CrossRefPubMedGoogle Scholar
  86. Zerbini LF, Wang Y, Czibere A, Correa RG, Cho JY, Ijiri K, Wei W, Joseph M, Gu X, Grall F, Goldring MB, Zhou JR, Libermann TA (2004) NF-kappa B-mediated repression of growth arrest- and DNA-damage-inducible proteins 45alpha and gamma is essential for cancer cell survival. Proc Natl Acad Sci USA 101:13618–13623CrossRefPubMedGoogle Scholar
  87. Zhan Q, Chen IT, Antinore MJ, Fornace AJ Jr (1998) Tumor suppressor p53 can participate in transcriptional induction of the GADD45 promoter in the absence of direct DNA binding. Mol Cell Biol 18:2768–2778PubMedGoogle Scholar
  88. Zhan Q, Antinore MJ, Wang XW, Carrier F, Smith ML, Harris CC, Fornace AJJ (1999) Association with Cdc2 and inhibition of Cdc2/Cyclin B1 kinase activity by the p53-regulated protein Gadd45. Oncogene 18:2892–2900CrossRefPubMedGoogle Scholar
  89. Zhang W, Li T, Shao Y, Zhang C, Wu Q, Yang H, Zhang J, Guan M, Yu B, Wan J (2010) Semi-quantitative detection of GADD45-gamma methylation levels in gastric, colorectal and pancreatic cancers using methylation-sensitive high-resolution melting analysis. J Cancer Res Clin Oncol 136:1267–1273CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jesús M. Salvador
    • 1
  • Joshua D. Brown-Clay
    • 2
  • Albert J. FornaceJr.
    • 2
    • 3
  1. 1.Department of Immunology and OncologyCentro Nacional de BiotecnologíaMadridSpain
  2. 2.Department of Biochemistry and Molecular and Cellular BiologyGeorgetown UniversityWashington, DCUSA
  3. 3.Lombardi Comprehensive Cancer CenterGeorgetown UniversityWashington, DCUSA

Personalised recommendations