Advertisement

Microbial Programmed Necrosis: The Cost of Conflicts Between Stress and Metabolism

  • Joris WinderickxEmail author
  • Paula LudovicoEmail author
Chapter
Part of the Cell Death in Biology and Diseases book series (CELLDEATH)

Abstract

When first described, necrosis was regarded as a rather accidental and uncontrolled form of cell death. However, recent observations made in metazoans challenged this view by pointing towards necrotic cell death as being the result of a programmed process that can be triggered by a variety of stimuli in conditions where the apoptosis-dictating caspases are downregulated and control is being exerted by the kinases RIP1 and RIP3. Also in microorganisms, cell death appears to be part of inherent developmental programs aiming to sustain survival of the species. While accumulating evidence supports the notion that microbes have rudimentary apoptotic programs, the question arises whether they possess the ability to activate necrotic programs as well. A critical survey of the current literature indicates that microbial cells certainly do orchestrate their own self-destruction by the activation of autolytic processes. Even in a more restrictive sense where “programmed necrosis” is used to define a controlled switch between apoptotic and necrotic cell death, the answer remains positive as evidenced by compelling data obtained with the model organisms S. cerevisiae. Moreover, the data obtained in the yeast model indicate that autophagy plays a crucial role in the decision to execute the necrotic program and they further suggest this program to become active when cells are no longer able to integrate their growth and reproduction potential. Thus, while to date no microbial genome was reported to encode for canonical caspases or RIP kinase orthologues, microbial cells apparently have the ability to determine their mode of cell death, indicative that the principles of apoptosis and programmed necrosis originated early during evolution.

Keywords

Yeast Cell Programme Cell Death Endoplasmic Reticulum Stress Necrotic Cell Death Acetic Acid Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Akematsu T, Endoh H (2010) Role of apoptosis-inducing factor (AIF) in programmed nuclear death during conjugation in Tetrahymena thermophila. BMC Cell Biol 11:13PubMedCentralPubMedGoogle Scholar
  2. Alexandre H, Guilloux-Benatier M (2006) Yeast autolysis in sparkling wine – a review. Aust J Grape Wine Res 12:119–127Google Scholar
  3. Almeida B, Ohlmeier S, Almeida AJ, Madeo F, Leao C, Rodrigues F, Ludovico P (2009) Yeast protein expression profile during acetic acid-induced apoptosis indicates causal involvement of the TOR pathway. Proteomics 9:720–732PubMedGoogle Scholar
  4. Amigoni L, Martegani E, Colombo S (2013) Lack of HXK2 induces localization of active Ras in mitochondria and triggers apoptosis in the yeast Saccharomyces cerevisiae. Oxid Med Cell Longev 2013:678473PubMedCentralPubMedGoogle Scholar
  5. Aragon AD, Rodriguez AL, Meirelles O, Roy S, Davidson GS, Tapia PH, Allen C, Joe R, Benn D, Werner-Washburne M (2008) Characterization of differentiated quiescent and nonquiescent cells in yeast stationary-phase cultures. Mol Biol Cell 19:1271–1280PubMedCentralPubMedGoogle Scholar
  6. Aravind L, Dixit VM, Koonin EV (1999) The domains of death: evolution of the apoptosis machinery. Trends Biochem Sci 24:47–53PubMedGoogle Scholar
  7. Arnoult D, Tatischeff I, Estaquier J, Girard M, Sureau F, Tissier JP, Grodet A, Dellinger M, Traincard F, Kahn A, Ameisen JC, Petit PX (2001) On the evolutionary conservation of the cell death pathway: mitochondrial release of an apoptosis-inducing factor during Dictyostelium discoideum cell death. Mol Biol Cell 12:3016–3030PubMedCentralPubMedGoogle Scholar
  8. Balzan R, Sapienza K, Galea DR, Vassallo N, Frey H, Bannister WH (2004) Aspirin commits yeast cells to apoptosis depending on carbon source. Microbiology 150:109–115PubMedGoogle Scholar
  9. Berry DL, Baehrecke EH (2008) Autophagy functions in programmed cell death. Autophagy 4:359–360PubMedCentralPubMedGoogle Scholar
  10. Bodrug SE, Aime-Sempe C, Sato T, Krajewski S, Hanada M, Reed JC (1995) Biochemical and functional comparisons of Mcl-1 and Bcl-2 proteins: evidence for a novel mechanism of regulating Bcl-2 family protein function. Cell Death Differ 2:173–182PubMedGoogle Scholar
  11. Boer VM, Amini S, Botstein D (2008) Influence of genotype and nutrition on survival and metabolism of starving yeast. Proc Natl Acad Sci U S A 105:6930–6935PubMedCentralPubMedGoogle Scholar
  12. Bonilla M, Cunningham KW (2002) Calcium release and influx in yeast: TRPC and VGCC rule another kingdom. Sci STKE 2002:pe17PubMedGoogle Scholar
  13. Bonilla M, Cunningham KW (2003) Mitogen-activated protein kinase stimulation of Ca(2+) signaling is required for survival of endoplasmic reticulum stress in yeast. Mol Biol Cell 14:4296–4305PubMedCentralPubMedGoogle Scholar
  14. Bonilla M, Nastase KK, Cunningham KW (2002) Essential role of calcineurin in response to endoplasmic reticulum stress. EMBO J 21:2343–2353PubMedCentralPubMedGoogle Scholar
  15. Burtner CR, Murakami CJ, Kennedy BK, Kaeberlein M (2009) A molecular mechanism of chronological aging in yeast. Cell Cycle 8:1256–1270PubMedCentralPubMedGoogle Scholar
  16. Büttner S, Bitto A, Ring J, Augsten M, Zabrocki P, Eisenberg T, Jungwirth H, Hutter S, Carmona-Gutierrez D, Kroemer G, Winderickx J, Madeo F (2008) Functional mitochondria are required for alpha-synuclein toxicity in aging yeast. J Biol Chem 283:7554–7560PubMedGoogle Scholar
  17. Büttner S, Eisenberg T, Carmona-Gutierrez D, Ruli D, Knauer H, Ruckenstuhl C, Sigrist C, Wissing S, Kollroser M, Frohlich KU, Sigrist S, Madeo F (2007) Endonuclease G regulates budding yeast life and death. Mol Cell 25:233–246PubMedGoogle Scholar
  18. Büttner S, Faes L, Reichelt WN, Broeskamp F, Habernig L, Benke S, Kourtis N, Ruli D, Carmona-Gutierrez D, Eisenberg T, D'Hooge P, Ghillebert R, Franssens V, Harger A, Pieber TR, Freudenberger P, Kroemer G, Sigrist SJ, Winderickx J, Callewaert G, Tavernarakis N, Madeo F (2013a) The Ca2+/Mn2+ ion-pump PMR1 links elevation of cytosolic Ca(2+) levels to alpha-synuclein toxicity in Parkinson’s disease models. Cell Death Differ 20:465–477PubMedCentralPubMedGoogle Scholar
  19. Büttner S, Habernig L, Broeskamp F, Ruli D, Vogtle FN, Vlachos M, Macchi F, Kuttner V, Carmona-Gutierrez D, Eisenberg T, Ring J, Markaki M, Taskin AA, Benke S, Ruckenstuhl C, Braun R, Van den Haute C, Bammens T, van der Perren A, Frohlich KU, Winderickx J, Kroemer G, Baekelandt V, Tavernarakis N, Kovacs GG, Dengjel J, Meisinger C, Sigrist SJ, Madeo F (2013b) Endonuclease G mediates alpha-synuclein cytotoxicity during Parkinson’s disease. EMBO J 32(23):3041–3054PubMedCentralPubMedGoogle Scholar
  20. Büttner S, Ruli D, Vogtle FN, Galluzzi L, Moitzi B, Eisenberg T, Kepp O, Habernig L, Carmona-Gutierrez D, Rockenfeller P, Laun P, Breitenbach M, Khoury C, Frohlich KU, Rechberger G, Meisinger C, Kroemer G, Madeo F (2011) A yeast BH3-only protein mediates the mitochondrial pathway of apoptosis. EMBO J 30:2779–2792PubMedCentralPubMedGoogle Scholar
  21. Carmona-Gutierrez D, Bauer MA, Ring J, Knauer H, Eisenberg T, Büttner S, Ruckenstuhl C, Reisenbichler A, Magnes C, Rechberger GN, Birner-Gruenberger R, Jungwirth H, Frohlich KU, Sinner F, Kroemer G, Madeo F (2011) The propeptide of yeast cathepsin D inhibits programmed necrosis. Cell Death Dis 2:e161PubMedCentralPubMedGoogle Scholar
  22. Carmona-Gutierrez D, Eisenberg T, Büttner S, Meisinger C, Kroemer G, Madeo F (2010a) Apoptosis in yeast: triggers, pathways, subroutines. Cell Death Differ 17:763–773PubMedGoogle Scholar
  23. Carmona-Gutierrez D, Frohlich KU, Kroemer G, Madeo F (2010b) Metacaspases are caspases. Doubt no more. Cell Death Differ 17:377–378PubMedGoogle Scholar
  24. Cebollero E, Carrascosa AV, Gonzalez R (2005) Evidence for yeast autophagy during simulation of sparkling wine aging: a reappraisal of the mechanism of yeast autolysis in wine. Biotechnol Prog 21:614–616PubMedGoogle Scholar
  25. Cebollero E, Gonzalez R (2006) Induction of autophagy by second-fermentation yeasts during elaboration of sparkling wines. Appl Environ Microbiol 72:4121–4127PubMedCentralPubMedGoogle Scholar
  26. Cebollero E, Rejas MT, Gonzalez R (2008) Autophagy in wine making. Methods Enzymol 451:163–175PubMedGoogle Scholar
  27. Cebulski J, Malouin J, Pinches N, Cascio V, Austriaco N (2011) Yeast Bax inhibitor, Bxi1p, is an ER-localized protein that links the unfolded protein response and programmed cell death in Saccharomyces cerevisiae. PLoS One 6:e20882PubMedCentralPubMedGoogle Scholar
  28. Claerhout S, Dutta B, Bossuyt W, Zhang F, Nguyen-Charles C, Dennison JB, Yu Q, Yu S, Balazsi G, Lu Y, Mills GB (2012) Abortive autophagy induces endoplasmic reticulum stress and cell death in cancer cells. PLoS One 7:e39400PubMedCentralPubMedGoogle Scholar
  29. Cooper AA, Gitler AD, Cashikar A, Haynes CM, Hill KJ, Bhullar B, Liu K, Xu K, Strathearn KE, Liu F, Cao S, Caldwell KA, Caldwell GA, Marsischky G, Kolodner RD, Labaer J, Rochet JC, Bonini NM, Lindquist S (2006) Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science 313:324–328PubMedCentralPubMedGoogle Scholar
  30. Coyne RS, Nikiforov MA, Smothers JF, Allis CD, Yao MC (1999) Parental expression of the chromodomain protein Pdd1p is required for completion of programmed DNA elimination and nuclear differentiation. Mol Cell 4:865–872PubMedGoogle Scholar
  31. Deponte M (2008) Programmed cell death in protists. Biochim Biophys Acta 1783:1396–1405PubMedGoogle Scholar
  32. Dickens LS, Powley IR, Hughes MA, MacFarlane M (2012) The “complexities” of life and death: death receptor signalling platforms. Exp Cell Res 318:1269–1277PubMedGoogle Scholar
  33. Din FV, Valanciute A, Houde VP, Zibrova D, Green KA, Sakamoto K, Alessi DR, Dunlop MG (2012) Aspirin inhibits mTOR signaling, activates AMP-activated protein kinase, and induces autophagy in colorectal cancer cells. Gastroenterology 142:1504–1515, e1503PubMedCentralPubMedGoogle Scholar
  34. Du L, Yu Y, Chen J, Liu Y, Xia Y, Chen Q, Liu X (2007) Arsenic induces caspase- and mitochondria-mediated apoptosis in Saccharomyces cerevisiae. FEMS Yeast Res 7:860–865PubMedGoogle Scholar
  35. Dudgeon DD, Zhang N, Ositelu OO, Kim H, Cunningham KW (2008) Nonapoptotic death of Saccharomyces cerevisiae cells that is stimulated by Hsp90 and inhibited by calcineurin and Cmk2 in response to endoplasmic reticulum stresses. Eukaryot Cell 7:2037–2051PubMedCentralPubMedGoogle Scholar
  36. Dwyer DJ, Camacho DM, Kohanski MA, Callura JM, Collins JJ (2012) Antibiotic-induced bacterial cell death exhibits physiological and biochemical hallmarks of apoptosis. Mol Cell 46:561–572PubMedCentralPubMedGoogle Scholar
  37. Dziedzic SA, Caplan AB (2012) Autophagy proteins play cytoprotective and cytocidal roles in leucine starvation-induced cell death in Saccharomyces cerevisiae. Autophagy 8:731–738PubMedCentralPubMedGoogle Scholar
  38. Eastwood MD, Cheung SW, Lee KY, Moffat J, Meneghini MD (2012) Developmentally programmed nuclear destruction during yeast gametogenesis. Dev Cell 23:35–44PubMedGoogle Scholar
  39. Eisenberg T, Carmona-Gutierrez D, Büttner S, Tavernarakis N, Madeo F (2010) Necrosis in yeast. Apoptosis 15:257–268PubMedGoogle Scholar
  40. Eisenberg T, Knauer H, Schauer A, Büttner S, Ruckenstuhl C, Carmona-Gutierrez D, Ring J, Schroeder S, Magnes C, Antonacci L, Fussi H, Deszcz L, Hartl R, Schraml E, Criollo A, Megalou E, Weiskopf D, Laun P, Heeren G, Breitenbach M, Grubeck-Loebenstein B, Herker E, Fahrenkrog B, Frohlich KU, Sinner F, Tavernarakis N, Minois N, Kroemer G, Madeo F (2009) Induction of autophagy by spermidine promotes longevity. Nat Cell Biol 11:1305–1314PubMedGoogle Scholar
  41. Engelberg-Kulka H, Sat B, Reches M, Amitai S, Hazan R (2004) Bacterial programmed cell death systems as targets for antibiotics. Trends Microbiol 12:66–71PubMedGoogle Scholar
  42. Fahrenkrog B (2011) Nma111p, the pro-apoptotic HtrA-like nuclear serine protease in Saccharomyces cerevisiae: a short survey. Biochem Soc Trans 39:1499–1501PubMedGoogle Scholar
  43. Fahrenkrog B, Sauder U, Aebi U (2004) The S. cerevisiae HtrA-like protein Nma111p is a nuclear serine protease that mediates yeast apoptosis. J Cell Sci 117:115–126PubMedGoogle Scholar
  44. Farrugia G, Balzan R (2012) Oxidative stress and programmed cell death in yeast. Front Oncol 2:64PubMedCentralPubMedGoogle Scholar
  45. Farrugia G, Bannister WH, Vassallo N, Balzan R (2013) Aspirin-induced apoptosis of yeast cells is associated with mitochondrial superoxide radical accumulation and NAD(P)H oxidation. FEMS Yeast Res 13(8):755–768PubMedGoogle Scholar
  46. Galluzzi L, Joza N, Tasdemir E, Maiuri MC, Hengartner M, Abrams JM, Tavernarakis N, Penninger J, Madeo F, Kroemer G (2008) No death without life: vital functions of apoptotic effectors. Cell Death Differ 15:1113–1123PubMedCentralPubMedGoogle Scholar
  47. Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S, Gottlieb E, Green DR, Hengartner MO, Kepp O, Knight RA, Kumar S, Lipton SA, Lu X, Madeo F, Malorni W, Mehlen P, Nunez G, Peter ME, Piacentini M, Rubinsztein DC, Shi Y, Simon HU, Vandenabeele P, White E, Yuan J, Zhivotovsky B, Melino G, Kroemer G (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19:107–120PubMedCentralPubMedGoogle Scholar
  48. Gannavaram S, Vedvyas C, Debrabant A (2008) Conservation of the pro-apoptotic nuclease activity of endonuclease G in unicellular trypanosomatid parasites. J Cell Sci 121:99–109PubMedGoogle Scholar
  49. Giavara S, Kosmidou E, Hande MP, Bianchi ME, Morgan A, d’Adda di Fagagna F, Jackson SP (2005) Yeast Nhp6A/B and mammalian Hmgb1 facilitate the maintenance of genome stability. Curr Biol 15:68–72PubMedGoogle Scholar
  50. Gordy C, He YW (2012) The crosstalk between autophagy and apoptosis: where does this lead? Protein Cell 3:17–27PubMedGoogle Scholar
  51. Gourlay CW, Ayscough KR (2006) Actin-induced hyperactivation of the Ras signaling pathway leads to apoptosis in Saccharomyces cerevisiae. Mol Cell Biol 26:6487–6501PubMedCentralPubMedGoogle Scholar
  52. Greenhalf W, Stephan C, Chaudhuri B (1996) Role of mitochondria and C-terminal membrane anchor of Bcl-2 in Bax induced growth arrest and mortality in Saccharomyces cerevisiae. FEBS Lett 380:169–175PubMedGoogle Scholar
  53. Guaragnella N, Bobba A, Passarella S, Marra E, Giannattasio S (2010) Yeast acetic acid-induced programmed cell death can occur without cytochrome c release which requires metacaspase YCA1. FEBS Lett 584:224–228PubMedGoogle Scholar
  54. Guaragnella N, Pereira C, Sousa MJ, Antonacci L, Passarella S, Corte-Real M, Marra E, Giannattasio S (2006) YCA1 participates in the acetic acid induced yeast programmed cell death also in a manner unrelated to its caspase-like activity. FEBS Lett 580:6880–6884PubMedGoogle Scholar
  55. Hanada M, Aime-Sempe C, Sato T, Reed JC (1995) Structure-function analysis of Bcl-2 protein. Identification of conserved domains important for homodimerization with Bcl-2 and heterodimerization with Bax. J Biol Chem 270:11962–11969PubMedGoogle Scholar
  56. Heo JM, Livnat-Levanon N, Taylor EB, Jones KT, Dephoure N, Ring J, Xie J, Brodsky JL, Madeo F, Gygi SP, Ashrafi K, Glickman MH, Rutter J (2010) A stress-responsive system for mitochondrial protein degradation. Mol Cell 40:465–480PubMedCentralPubMedGoogle Scholar
  57. Herker E, Jungwirth H, Lehmann KA, Maldener C, Frohlich KU, Wissing S, Buttner S, Fehr M, Sigrist S, Madeo F (2004) Chronological aging leads to apoptosis in yeast. J Cell Biol 164:501–507PubMedCentralPubMedGoogle Scholar
  58. Imre G, Larisch S, Rajalingam K (2011) Ripoptosome: a novel IAP-regulated cell death-signalling platform. J Mol Cell Biol 3:324–326PubMedGoogle Scholar
  59. Ink B, Zornig M, Baum B, Hajibagheri N, James C, Chittenden T, Evan G (1997) Human Bak induces cell death in Schizosaccharomyces pombe with morphological changes similar to those with apoptosis in mammalian cells. Mol Cell Biol 17:2468–2474PubMedCentralPubMedGoogle Scholar
  60. Jiang R, Choi W, Hu L, Gerner EW, Hamilton SR, Zhang W (2007) Activation of polyamine catabolism by N1, N11-diethylnorspermine alters the cellular localization of mTOR and downregulates mTOR protein level in glioblastoma cells. Cancer Biol Ther 6:1644–1648PubMedGoogle Scholar
  61. Jungwirth H, Ring J, Mayer T, Schauer A, Buttner S, Eisenberg T, Carmona-Gutierrez D, Kuchler K, Madeo F (2008) Loss of peroxisome function triggers necrosis. FEBS Lett 582:2882–2886PubMedGoogle Scholar
  62. Jurgensmeier JM, Krajewski S, Armstrong RC, Wilson GM, Oltersdorf T, Fritz LC, Reed JC, Ottilie S (1997) Bax- and Bak-induced cell death in the fission yeast Schizosaccharomyces pombe. Mol Biol Cell 8:325–339PubMedCentralPubMedGoogle Scholar
  63. Kaczanowski S, Sajid M, Reece SE (2011) Evolution of apoptosis-like programmed cell death in unicellular protozoan parasites. Parasit Vectors 4:44PubMedCentralPubMedGoogle Scholar
  64. Kang R, Livesey KM, Zeh HJ 3rd, Lotze MT, Tang D (2011) Metabolic regulation by HMGB1-mediated autophagy and mitophagy. Autophagy 7:1256–1258PubMedGoogle Scholar
  65. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257PubMedCentralPubMedGoogle Scholar
  66. Kim H, Kim A, Cunningham KW (2012) Vacuolar H+-ATPase (V-ATPase) promotes vacuolar membrane permeabilization and nonapoptotic death in stressed yeast. J Biol Chem 287:19029–19039PubMedCentralPubMedGoogle Scholar
  67. Kim YS, Lee YM, Park JS, Lee SK, Kim EC (2010) SIRT1 modulates high-mobility group box 1-induced osteoclastogenic cytokines in human periodontal ligament cells. J Cell Biochem 111:1310–1320PubMedGoogle Scholar
  68. Kissova I, Plamondon LT, Brisson L, Priault M, Renouf V, Schaeffer J, Camougrand N, Manon S (2006) Evaluation of the roles of apoptosis, autophagy, and mitophagy in the loss of plating efficiency induced by Bax expression in yeast. J Biol Chem 281:36187–36197PubMedGoogle Scholar
  69. Kitanovic A, Bonowski F, Heigwer F, Ruoff P, Kitanovic I, Ungewiss C, Wolfl S (2012) Acetic acid treatment in S. cerevisiae creates significant energy deficiency and nutrient starvation that is dependent on the activity of the mitochondrial transcriptional complex Hap2-3-4-5. Front Oncol 2:118PubMedCentralPubMedGoogle Scholar
  70. Klosinska MM, Crutchfield CA, Bradley PH, Rabinowitz JD, Broach JR (2011) Yeast cells can access distinct quiescent states. Genes Dev 25:336–349PubMedCentralPubMedGoogle Scholar
  71. Koonin EV, Aravind L (2002) Origin and evolution of eukaryotic apoptosis: the bacterial connection. Cell Death Differ 9:394–404PubMedGoogle Scholar
  72. Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, Hengartner M, Knight RA, Kumar S, Lipton SA, Malorni W, Nunez G, Peter ME, Tschopp J, Yuan J, Piacentini M, Zhivotovsky B, Melino G (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16:3–11PubMedCentralPubMedGoogle Scholar
  73. Leadsham JE, Gourlay CW (2010) cAMP/PKA signaling balances respiratory activity with mitochondria dependent apoptosis via transcriptional regulation. BMC Cell Biol 11:92PubMedCentralPubMedGoogle Scholar
  74. Lee RE, Brunette S, Puente LG, Megeney LA (2010) Metacaspase Yca1 is required for clearance of insoluble protein aggregates. Proc Natl Acad Sci U S A 107:13348–13353PubMedCentralPubMedGoogle Scholar
  75. Lewis J, Devin A, Miller A, Lin Y, Rodriguez Y, Neckers L, Liu ZG (2000) Disruption of hsp90 function results in degradation of the death domain kinase, receptor-interacting protein (RIP), and blockage of tumor necrosis factor-induced nuclear factor-kappaB activation. J Biol Chem 275:10519–10526PubMedGoogle Scholar
  76. Lewis K (2000) Programmed death in bacteria. Microbiol Mol Biol Rev 64:503–514PubMedCentralPubMedGoogle Scholar
  77. Liang Q, Zhou B (2007) Copper and manganese induce yeast apoptosis via different pathways. Mol Biol Cell 18:4741–4749PubMedCentralPubMedGoogle Scholar
  78. Ligr M, Madeo F, Frohlich E, Hilt W, Frohlich KU, Wolf DH (1998) Mammalian Bax triggers apoptotic changes in yeast. FEBS Lett 438:61–65PubMedGoogle Scholar
  79. Longo VD, Mitteldorf J, Skulachev VP (2005) Programmed and altruistic ageing. Nat Rev Genet 6:866–872PubMedGoogle Scholar
  80. Longo VD, Shadel GS, Kaeberlein M, Kennedy B (2012) Replicative and chronological aging in Saccharomyces cerevisiae. Cell Metab 16:18–31PubMedCentralPubMedGoogle Scholar
  81. Loos B, Engelbrecht AM, Lockshin RA, Klionsky DJ, Zakeri Z (2013) The variability of autophagy and cell death susceptibility: unanswered questions. Autophagy 9:1270–1285PubMedGoogle Scholar
  82. Low CP, Yang H (2008) Programmed cell death in fission yeast Schizosaccharomyces pombe. Biochim Biophys Acta 1783:1335–1349PubMedGoogle Scholar
  83. Luciani MF, Giusti C, Harms B, Oshima Y, Kikuchi H, Kubohara Y, Golstein P (2011) Atg1 allows second-signaled autophagic cell death in Dictyostelium. Autophagy 7:501–508PubMedGoogle Scholar
  84. Ludovico P, Rodrigues F, Almeida A, Silva MT, Barrientos A, Corte-Real M (2002) Cytochrome c release and mitochondria involvement in programmed cell death induced by acetic acid in Saccharomyces cerevisiae. Mol Biol Cell 13:2598–2606PubMedCentralPubMedGoogle Scholar
  85. Ludovico P, Sousa MJ, Silva MT, Leao C, Corte-Real M (2001) Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology 147:2409–2415PubMedGoogle Scholar
  86. Madeo F, Carmona-Gutierrez D, Ring J, Büttner S, Eisenberg T, Kroemer G (2009) Caspase-dependent and caspase-independent cell death pathways in yeast. Biochem Biophys Res Commun 382:227–231PubMedGoogle Scholar
  87. Madeo F, Frohlich E, Frohlich KU (1997) A yeast mutant showing diagnostic markers of early and late apoptosis. J Cell Biol 139:729–734PubMedCentralPubMedGoogle Scholar
  88. Madeo F, Frohlich E, Ligr M, Grey M, Sigrist SJ, Wolf DH, Frohlich KU (1999) Oxygen stress: a regulator of apoptosis in yeast. J Cell Biol 145:757–767PubMedCentralPubMedGoogle Scholar
  89. Madeo F, Herker E, Maldener C, Wissing S, Lachelt S, Herlan M, Fehr M, Lauber K, Sigrist SJ, Wesselborg S, Frohlich KU (2002) A caspase-related protease regulates apoptosis in yeast. Mol Cell 9:911–917PubMedGoogle Scholar
  90. Madeo F, Tavernarakis N, Kroemer G (2010) Can autophagy promote longevity? Nat Cell Biol 12:842–846PubMedGoogle Scholar
  91. Madireddi MT, Coyne RS, Smothers JF, Mickey KM, Yao MC, Allis CD (1996) Pdd1p, a novel chromodomain-containing protein, links heterochromatin assembly and DNA elimination in Tetrahymena. Cell 87:75–84PubMedGoogle Scholar
  92. Maercker C, Kortwig H, Nikiforov MA, Allis CD, Lipps HJ (1999) A nuclear protein involved in apoptotic-like DNA degradation in Stylonychia: implications for similar mechanisms in differentiating and starved cells. Mol Biol Cell 10:3003–3014PubMedCentralPubMedGoogle Scholar
  93. Manon S, Chaudhuri B, Guerin M (1997) Release of cytochrome c and decrease of cytochrome c oxidase in Bax-expressing yeast cells, and prevention of these effects by coexpression of Bcl-xL. FEBS Lett 415:29–32PubMedGoogle Scholar
  94. Mason DA, Shulga N, Undavai S, Ferrando-May E, Rexach MF, Goldfarb DS (2005) Increased nuclear envelope permeability and Pep4p-dependent degradation of nucleoporins during hydrogen peroxide-induced cell death. FEMS Yeast Res 5:1237–1251PubMedGoogle Scholar
  95. Montanaro L, Poggi A, Visai L, Ravaioli S, Campoccia D, Speziale P, Arciola CR (2011) Extracellular DNA in biofilms. Int J Artif Organs 34:824–831PubMedGoogle Scholar
  96. Morselli E, Marino G, Bennetzen MV, Eisenberg T, Megalou E, Schroeder S, Cabrera S, Benit P, Rustin P, Criollo A, Kepp O, Galluzzi L, Shen S, Malik SA, Maiuri MC, Horio Y, Lopez-Otin C, Andersen JS, Tavernarakis N, Madeo F, Kroemer G (2011) Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome. J Cell Biol 192:615–629PubMedCentralPubMedGoogle Scholar
  97. Muller M, Reichert AS (2011) Mitophagy, mitochondrial dynamics and the general stress response in yeast. Biochem Soc Trans 39:1514–1519PubMedGoogle Scholar
  98. Murakami C, Delaney JR, Chou A, Carr D, Schleit J, Sutphin GL, An EH, Castanza AS, Fletcher M, Goswami S, Higgins S, Holmberg M, Hui J, Jelic M, Jeong KS, Kim JR, Klum S, Liao E, Lin MS, Lo W, Miller H, Moller R, Peng ZJ, Pollard T, Pradeep P, Pruett D, Rai D, Ros V, Schuster A, Singh M, Spector BL, Vander Wende H, Wang AM, Wasko BM, Olsen B, Kaeberlein M (2012) pH neutralization protects against reduction in replicative lifespan following chronological aging in yeast. Cell Cycle 11:3087–3096PubMedCentralPubMedGoogle Scholar
  99. Nedelcu AM, Driscoll WW, Durand PM, Herron MD, Rashidi A (2011) On the paradigm of altruistic suicide in the unicellular world. Evolution 65:3–20PubMedGoogle Scholar
  100. Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N (2013) Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta 1833(12):3448–3459PubMedGoogle Scholar
  101. Oda K, Kawasaki N, Fukuyama M, Ikeda S (2007) Ectopic expression of mitochondria endonuclease Pnu1p from Schizosaccharomyces pombe induces cell death of the yeast. J Biochem Mol Biol 40:1095–1099PubMedGoogle Scholar
  102. Pereira C, Chaves S, Alves S, Salin B, Camougrand N, Manon S, Sousa MJ, Corte-Real M (2010) Mitochondrial degradation in acetic acid-induced yeast apoptosis: the role of Pep4 and the ADP/ATP carrier. Mol Microbiol 76:1398–1410PubMedGoogle Scholar
  103. Piper PW (2012) Maximising the yeast chronological lifespan. Subcell Biochem 57:145–159PubMedGoogle Scholar
  104. Piper PW, Harris NL, MacLean M (2006) Preadaptation to efficient respiratory maintenance is essential both for maximal longevity and the retention of replicative potential in chronologically ageing yeast. Mech Ageing Dev 127:733–740PubMedGoogle Scholar
  105. Pisetsky D (2011) Cell death in the pathogenesis of immune-mediated diseases: the role of HMGB1 and DAMP-PAMP complexes. Swiss Med Wkly 141:w13256PubMedCentralPubMedGoogle Scholar
  106. Pollitt LC, Colegrave N, Khan SM, Sajid M, Reece SE (2010) Investigating the evolution of apoptosis in malaria parasites: the importance of ecology. Parasit Vectors 3:105PubMedCentralPubMedGoogle Scholar
  107. Poulin R, Pegg AE (1995) Stable intracellular acidification upon polyamine depletion induced by alpha-difluoromethylornithine or N1, N12-bis(ethyl)spermine in L1210 leukaemia cells. Biochem J 312(Pt 3):749–756PubMedCentralPubMedGoogle Scholar
  108. Raucci A, Palumbo R, Bianchi ME (2007) HMGB1: a signal of necrosis. Autoimmunity 40:285–289PubMedGoogle Scholar
  109. Reece SE, Pollitt LC, Colegrave N, Gardner A (2011) The meaning of death: evolution and ecology of apoptosis in protozoan parasites. PLoS Pathog 7:e1002320PubMedCentralPubMedGoogle Scholar
  110. Reiter J, Herker E, Madeo F, Schmitt MJ (2005) Viral killer toxins induce caspase-mediated apoptosis in yeast. J Cell Biol 168:353–358PubMedCentralPubMedGoogle Scholar
  111. Rico E, Alzate JF, Arias AA, Moreno D, Clos J, Gago F, Moreno I, Dominguez M, Jimenez-Ruiz A (2009) Leishmania infantum expresses a mitochondrial nuclease homologous to EndoG that migrates to the nucleus in response to an apoptotic stimulus. Mol Biochem Parasitol 163:28–38PubMedGoogle Scholar
  112. Roisin-Bouffay C, Luciani MF, Klein G, Levraud JP, Adam M, Golstein P (2004) Developmental cell death in dictyostelium does not require paracaspase. J Biol Chem 279:11489–11494PubMedGoogle Scholar
  113. Sampaio-Marques B, Felgueiras C, Silva A, Rodrigues F, Ludovico P (2011) Yeast chronological lifespan and proteotoxic stress: is autophagy good or bad? Biochem Soc Trans 39:1466–1470PubMedGoogle Scholar
  114. Sampaio-Marques B, Felgueiras C, Silva A, Rodrigues M, Tenreiro S, Franssens V, Reichert AS, Outeiro TF, Winderickx J, Ludovico P (2012) SNCA (alpha-synuclein)-induced toxicity in yeast cells is dependent on sirtuin 2 (Sir2)-mediated mitophagy. Autophagy 8:1494–1509PubMedGoogle Scholar
  115. Sancenon V, Lee SA, Patrick C, Griffith J, Paulino A, Outeiro TF, Reggiori F, Masliah E, Muchowski PJ (2012) Suppression of alpha-synuclein toxicity and vesicle trafficking defects by phosphorylation at S129 in yeast depends on genetic context. Hum Mol Genet 21:2432–2449PubMedCentralPubMedGoogle Scholar
  116. Sapienza K, Bannister W, Balzan R (2008) Mitochondrial involvement in aspirin-induced apoptosis in yeast. Microbiology 154:2740–2747PubMedGoogle Scholar
  117. Sato T, Hanada M, Bodrug S, Irie S, Iwama N, Boise LH, Thompson CB, Golemis E, Fong L, Wang HG et al (1994) Interactions among members of the Bcl-2 protein family analyzed with a yeast two-hybrid system. Proc Natl Acad Sci U S A 91:9238–9242PubMedCentralPubMedGoogle Scholar
  118. Schauer A, Knauer H, Ruckenstuhl C, Fussi H, Durchschlag M, Potocnik U, Frohlich KU (2009) Vacuolar functions determine the mode of cell death. Biochim Biophys Acta 1793:540–545PubMedGoogle Scholar
  119. Schmitt MJ, Reiter J (2008) Viral induced yeast apoptosis. Biochim Biophys Acta 1783:1413–1417PubMedGoogle Scholar
  120. Seo JG, Lai CY, Miceli MV, Jazwinski SM (2007) A novel role of peroxin PEX6: suppression of aging defects in mitochondria. Aging Cell 6:405–413PubMedGoogle Scholar
  121. Severin FF, Hyman AA (2002) Pheromone induces programmed cell death in S. cerevisiae. Curr Biol 12:R233–R235PubMedGoogle Scholar
  122. Shao W, Yeretssian G, Doiron K, Hussain SN, Saleh M (2007) The caspase-1 digestome identifies the glycolysis pathway as a target during infection and septic shock. J Biol Chem 282:36321–36329PubMedGoogle Scholar
  123. Silva A, Almeida B, Sampaio-Marques B, Reis MI, Ohlmeier S, Rodrigues F, Vale A, Ludovico P (2011) Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a specific substrate of yeast metacaspase. Biochim Biophys Acta 1813:2044–2049PubMedGoogle Scholar
  124. Silva A, Sampaio-Marques B, Fernandes A, Carreto L, Rodrigues F, Holcik M, Santos MA, Ludovico P (2013) Involvement of yeast HSP90 isoforms in response to stress and cell death induced by acetic acid. PLoS One 8:e71294PubMedCentralPubMedGoogle Scholar
  125. Silva RD, Sotoca R, Johansson B, Ludovico P, Sansonetty F, Silva MT, Peinado JM, Corte-Real M (2005) Hyperosmotic stress induces metacaspase- and mitochondria-dependent apoptosis in Saccharomyces cerevisiae. Mol Microbiol 58:824–834PubMedGoogle Scholar
  126. Smets B, Ghillebert R, De Snijder P, Binda M, Swinnen E, De Virgilio C, Winderickx J (2010) Life in the midst of scarcity: adaptations to nutrient availability in Saccharomyces cerevisiae. Curr Genet 56:1–32PubMedGoogle Scholar
  127. Stephan JS, Yeh YY, Ramachandran V, Deminoff SJ, Herman PK (2009) The Tor and PKA signaling pathways independently target the Atg1/Atg13 protein kinase complex to control autophagy. Proc Natl Acad Sci U S A 106:17049–17054PubMedCentralPubMedGoogle Scholar
  128. Sundstrom JF, Vaculova A, Smertenko AP, Savenkov EI, Golovko A, Minina E, Tiwari BS, Rodriguez-Nieto S, Zamyatnin AA Jr, Valineva T, Saarikettu J, Frilander MJ, Suarez MF, Zavialov A, Stahl U, Hussey PJ, Silvennoinen O, Sundberg E, Zhivotovsky B, Bozhkov PV (2009) Tudor staphylococcal nuclease is an evolutionarily conserved component of the programmed cell death degradome. Nat Cell Biol 11:1347–1354PubMedGoogle Scholar
  129. Syntichaki P, Samara C, Tavernarakis N (2005) The vacuolar H+−ATPase mediates intracellular acidification required for neurodegeneration in C. elegans. Curr Biol 15:1249–1254PubMedGoogle Scholar
  130. Tang D, Kang R, Cheh CW, Livesey KM, Liang X, Schapiro NE, Benschop R, Sparvero LJ, Amoscato AA, Tracey KJ, Zeh HJ, Lotze MT (2010a) HMGB1 release and redox regulates autophagy and apoptosis in cancer cells. Oncogene 29:5299–5310PubMedCentralPubMedGoogle Scholar
  131. Tang D, Kang R, Livesey KM, Cheh CW, Farkas A, Loughran P, Hoppe G, Bianchi ME, Tracey KJ, Zeh HJ 3rd, Lotze MT (2010b) Endogenous HMGB1 regulates autophagy. J Cell Biol 190:881–892PubMedCentralPubMedGoogle Scholar
  132. Tang D, Kang R, Livesey KM, Kroemer G, Billiar TR, Van Houten B, Zeh HJ 3rd, Lotze MT (2011) High-mobility group box 1 is essential for mitochondrial quality control. Cell Metab 13:701–711PubMedCentralPubMedGoogle Scholar
  133. Tang D, Loze MT, Zeh HJ, Kang R (2010c) The redox protein HMGB1 regulates cell death and survival in cancer treatment. Autophagy 6:1181–1183PubMedGoogle Scholar
  134. Tao W, Kurschner C, Morgan JI (1997) Modulation of cell death in yeast by the Bcl-2 family of proteins. J Biol Chem 272:15547–15552PubMedGoogle Scholar
  135. Tao W, Kurschner C, Morgan JI (1998) Bcl-xS and Bad potentiate the death suppressing activities of Bcl-xL, Bcl-2, and A1 in yeast. J Biol Chem 273:23704–23708PubMedGoogle Scholar
  136. Taylor-Brown E, Hurd H (2013) The first suicides: a legacy inherited by parasitic protozoans from prokaryote ancestors. Parasit Vectors 6:108PubMedCentralPubMedGoogle Scholar
  137. Taylor EB, Rutter J (2011) Mitochondrial quality control by the ubiquitin-proteasome system. Biochem Soc Trans 39:1509–1513PubMedGoogle Scholar
  138. Tudela R, Gallardo-Chacon JJ, Rius N, Lopez-Tamames E, Buxaderas S (2012) Ultrastructural changes of sparkling wine lees during long-term aging in real enological conditions. FEMS Yeast Res 12:466–476PubMedGoogle Scholar
  139. Ullman E, Fan Y, Stawowczyk M, Chen HM, Yue Z, Zong WX (2008) Autophagy promotes necrosis in apoptosis-deficient cells in response to ER stress. Cell Death Differ 15:422–425PubMedCentralPubMedGoogle Scholar
  140. Vachova L, Cap M, Palkova Z (2012) Yeast colonies: a model for studies of aging, environmental adaptation, and longevity. Oxid Med Cell Longev 2012:601836PubMedCentralPubMedGoogle Scholar
  141. Vachova L, Kucerova H, Devaux F, Ulehlova M, Palkova Z (2009) Metabolic diversification of cells during the development of yeast colonies. Environ Microbiol 11:494–504PubMedGoogle Scholar
  142. Vachova L, Palkova Z (2011) Aging and longevity of yeast colony populations: metabolic adaptation and differentiation. Biochem Soc Trans 39:1471–1475PubMedGoogle Scholar
  143. Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11:700–714PubMedGoogle Scholar
  144. Vanlangenakker N, Vanden Berghe T, Vandenabeele P (2012) Many stimuli pull the necrotic trigger, an overview. Cell Death Differ 19:75–86PubMedCentralPubMedGoogle Scholar
  145. Walter D, Matter A, Fahrenkrog B (2010) Bre1p-mediated histone H2B ubiquitylation regulates apoptosis in Saccharomyces cerevisiae. J Cell Sci 123:1931–1939PubMedGoogle Scholar
  146. Walter D, Wissing S, Madeo F, Fahrenkrog B (2006) The inhibitor-of-apoptosis protein Bir1p protects against apoptosis in S. cerevisiae and is a substrate for the yeast homologue of Omi/HtrA2. J Cell Sci 119:1843–1851PubMedGoogle Scholar
  147. Weinberger M, Feng L, Paul A, Smith DL Jr, Hontz RD, Smith JS, Vujcic M, Singh KK, Huberman JA, Burhans WC (2007) DNA replication stress is a determinant of chronological lifespan in budding yeast. PLoS One 2:e748PubMedCentralPubMedGoogle Scholar
  148. Weinberger M, Ramachandran L, Feng L, Sharma K, Sun X, Marchetti M, Huberman JA, Burhans WC (2005) Apoptosis in budding yeast caused by defects in initiation of DNA replication. J Cell Sci 118:3543–3553PubMedGoogle Scholar
  149. Werner-Washburne M, Roy S, Davidson GS (2012) Aging and the survival of quiescent and non-quiescent cells in yeast stationary-phase cultures. Subcell Biochem 57:123–143PubMedGoogle Scholar
  150. Wissing S, Ludovico P, Herker E, Buttner S, Engelhardt SM, Decker T, Link A, Proksch A, Rodrigues F, Corte-Real M, Frohlich KU, Manns J, Cande C, Sigrist SJ, Kroemer G, Madeo F (2004) An AIF orthologue regulates apoptosis in yeast. J Cell Biol 166:969–974PubMedCentralPubMedGoogle Scholar
  151. Yordanova ZP, Iakimova ET, Cristescu SM, Harren FJ, Kapchina-Toteva VM, Woltering EJ (2010) Involvement of ethylene and nitric oxide in cell death in mastoparan-treated unicellular alga Chlamydomonas reinhardtii. Cell Biol Int 34:301–308PubMedGoogle Scholar
  152. Yorimitsu T, Zaman S, Broach JR, Klionsky DJ (2007) Protein kinase A and Sch9 cooperatively regulate induction of autophagy in Saccharomyces cerevisiae. Mol Biol Cell 18:4180–4189PubMedCentralPubMedGoogle Scholar
  153. Yu L, Lenardo MJ, Baehrecke EH (2004) Autophagy and caspases: a new cell death program. Cell Cycle 3:1124–1126PubMedGoogle Scholar
  154. Zabrocki P, Bastiaens I, Delay C, Bammens T, Ghillebert R, Pellens K, De Virgilio C, Van Leuven F, Winderickx J (2008) Phosphorylation, lipid raft interaction and traffic of alpha-synuclein in a yeast model for Parkinson. Biochim Biophys Acta 1783:1767–1780PubMedGoogle Scholar
  155. Zha H, Fisk HA, Yaffe MP, Mahajan N, Herman B, Reed JC (1996) Structure-function comparisons of the proapoptotic protein Bax in yeast and mammalian cells. Mol Cell Biol 16:6494–6508PubMedCentralPubMedGoogle Scholar
  156. Zhang NN, Dudgeon DD, Paliwal S, Levchenko A, Grote E, Cunningham KW (2006) Multiple signaling pathways regulate yeast cell death during the response to mating pheromones. Mol Biol Cell 17:3409–3422PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Functional BiologyUniversity of LeuvenHeverleeBelgium
  2. 2.Life and Health Sciences Research Institute (ICVS), School of Health SciencesUniversity of MinhoBragaPortugal
  3. 3.ICVS/3B’s – PT Government Associate LaboratoryBraga/GuimarãesPortugal

Personalised recommendations