Advertisement

Vitrification of Oocytes: From Basic Science to Clinical Application

  • Amir AravEmail author
  • Yehudit Natan
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 761)

Abstract

Vitrification is a physical process by which a liquid is transformed into a solid of amorphous glass form. It was only at the end of the nineteenth century (1898) that Gustav Heinrich Johann Apollon Tammann pointed out that a large number of substances can be obtained as glasses and suggested that this property might be universal (Tammann, Zeitschrift for Physikalische Chemie; 25: 441–479, 1898). Basically, vitrification is the supercooling of a liquid to a temperature at which the viscosity is so high that it can be defined as being at a solid state. The understanding of the vitrification process has been deepened over the years and has been applied for cryopreservation and currently is the method of choice for preserving oocytes and embryos.

Keywords

Vitrification Oocytes Embryos Cryopreservation Application 

Notes

Acknowledgment

I would like to thank Prof. Kui Liu for his suggestions and critical reading of the manuscript.

References

  1. Adrian M, Dubochet J, Lepault J, McDowall AW (1984) Cryo-electron microscopy of viruses. Nature 308(5954):32–36PubMedCrossRefGoogle Scholar
  2. Almodin CG, Minguetti-Camara VC, Paixao CL, Pereira PC (2010) Embryo development and gestation using fresh and vitrified oocytes. Hum Reprod 25:1192–1198PubMedCrossRefGoogle Scholar
  3. Arav A (1989) Vitrification of oocytes and embryos. DVM thesis, Bologna UniversityGoogle Scholar
  4. Arav A (1992) Vitrification of oocyte and embryos. In: Lauria A, Gandolfi F (eds) New trends in embryo transfer. Portland Press, Cambridge, England, pp 255–264Google Scholar
  5. Arav A, Zeron Y (1997) Vitrification of bovine oocytes using modified minimum drop size technique (MDS) is effected by the composition and the concentration of the vitrification solution and by the cooling conditions. Theriogenology 47(1):341CrossRefGoogle Scholar
  6. Arav A, Gianaroli L, Suriano P (1988) Titration of vitrification solution in mouse embryo cryopreservation. Cryobiology 6:567CrossRefGoogle Scholar
  7. Arav A, Carney JN, Pease GR, Liu KL (1994) Recent developments in cryopreservation of stallion semen with special emphasis on thawing procedure using thermal hysteresis proteins. Zygote 2(4):379–382PubMedCrossRefGoogle Scholar
  8. Arav A, Pearl M, Zeron Y (2000) Does lipid profile explain chilling sensitivity and membrane lipid phase transition of spermatozoa and oocytes? Cryo Letters 21:179–186PubMedGoogle Scholar
  9. Arav A, Yavin S, Zeron Y, Natan Y, Dekel I, Gacitua H (2002) New trend in gamete’s cryopreservation. Mol Cell Endocrinol 187:77–81PubMedCrossRefGoogle Scholar
  10. Bielanski A, Nadin-Davis S, Sapp T, Lutze-Wallace C (2000) Viral contamination of embryos cryopreserved in liquid nitrogen. Cryobiology 40(2):110–116PubMedCrossRefGoogle Scholar
  11. Bielanski A, Bergeron H, Lau PC, Devenish J (2003) Microbial contamination of embryos and semen during long term banking in liquid nitrogen. Cryobiology 46(2):146–152PubMedCrossRefGoogle Scholar
  12. Burton EF, Oliver WF (1935) The crystal structure of ice at low temperatures. Proc R Soc Lond A 153:166–172CrossRefGoogle Scholar
  13. Camus A, Clairaz P, Ersham A, Van Kappel AL, Savic G, Staub C (2006) Principe de la vitrification: cinétiques comparatives. The comparison of the process of five different vitrification devices. Gynecol Obstet Fertil 34:737–745PubMedCrossRefGoogle Scholar
  14. Carroll J, Depypere H, Matthews CD (1990) Freeze–thaw-induced changes of the zona pellucida explains decreased rates of fertilization in frozen–thawed mouse oocytes. J Reprod Fertil 90:547–553PubMedCrossRefGoogle Scholar
  15. Chen SU, Lien YR, Cheng YY, Chen HF, Ho HN, Yang YS (2001) Vitrification of mouse oocytes using closed pulled straws (CPS) achieves a high survival and preserves good patterns of meiotic spindles, compared with conventional straws, open pulled straws (OPS) and grids. Hum Reprod 16:2350–2356PubMedCrossRefGoogle Scholar
  16. Chen SU, Chien C-L, Wu M-Y, Chen T-H, Lai S-M, Lin C-W, Yang YS (2006) Novel direct cover vitrification for cryopreservation of ovarian tissues increases follicle viability and pregnancy capability in mice. Hum Reprod 21:2794–2800PubMedCrossRefGoogle Scholar
  17. Chian RC, Son WY, Huang JY, Cui SJ, Buckett WM, Tan SL (2005) High survival rates and pregnancies of human oocytes following vitrification: preliminary report. Fertil Steril 84:S36 (abstract)CrossRefGoogle Scholar
  18. Ciotti PM, Porcu E, Notarangelo L, Magrini O, Bazzocchi A, Venturoli S (2009) Meiotic spindle recovery is faster in vitrification of human oocytes ompared to slow freezing. Fertil Steril 91:2399–2407PubMedCrossRefGoogle Scholar
  19. Cobo A, Domingo J, Pérez S, Crespo J, Remohí J, Pellicer A (2008) Vitrification: an effective new approach to oocyte banking and preserving fertility in cancer patients. Clin Transl Oncol 10(5):268–273PubMedCrossRefGoogle Scholar
  20. Crowe JH, Crowe LM, Mouradian R (1983) Stabilization of biological membranes at low water activities. Cryobiology 20(3):346–356PubMedCrossRefGoogle Scholar
  21. Dinnyes A, Dai Y, Jiang S, Yang X (2000) High developmental rates of vitrified bovine oocytes following parthenogenetic activation, in vitro fertilization, and somatic cell nuclear transfer. Biol Reprod 63:513–518PubMedCrossRefGoogle Scholar
  22. Fabbri R, Porcu E, Marsella T, Primavera MR, Rocchetta G, Ciotti PM, Magrini O, Seracchioli R, Venturoli S, Flamigni C (2000) Technical aspects of oocyte cryopreservation. Mol Cell Endocrinol 169:39–42PubMedCrossRefGoogle Scholar
  23. Fahy GM, Rall WF (2007) Vitrification: an overview. In: Liebermann J, Tucker MJ (eds) Vitrification in assisted reproduction: a user’s manual and troubleshooting guide. Informa Healthcare, LondonGoogle Scholar
  24. Fahy GM, MacFarlane DR, Angell CA, Meryman HT (1984) Vitrification as an approach to cryopreservation. Cryobiology 21(4):407–426PubMedCrossRefGoogle Scholar
  25. Ghetler Y, Yavin S, Shalgi R, Arav A (2005) The effect of chilling on membrane lipid phase transition in human oocytes and zygotes. Hum Reprod 20:3385–3389PubMedCrossRefGoogle Scholar
  26. Gook DA, Osborn SM, Johnston WIH (1993) Cryopreservation of mouse and human oocytes using 1,2-propanediol and the configuration of the meiotic spindle. Hum Reprod 8:1101–1109PubMedGoogle Scholar
  27. Gupta MK, Uhm SJ, Lee HT (2010) Effect of vitrification and betamercaptoethanol on reactive oxygen species activity and in vitro development of oocytes vitrified before or after in vitro fertilization. Fertil Steril 93:2602–2607PubMedCrossRefGoogle Scholar
  28. Hamawaki A, Kuwayama M, Hamano S (1999) Minimum volume cooling method for bovine blastocyst vitrification. Theriogenology 51:165CrossRefGoogle Scholar
  29. Hawkes L (1929) Super-cooled water. Nature 123:244CrossRefGoogle Scholar
  30. von Humboldt A, Gay-Lussac JL (1807) Observations sur l’intensité et l’inclinaison des forces magnétiques, faites en France, en Suisse, en Italie et en Allemagne. Mémoires de physique et de chimie de la Société d’Arcueil 1:1–22Google Scholar
  31. Isachenko V, Folch J, Isachenko E, Nawroth F, Krivokharchenko A, Vajta G, DattenaM AJL (2003) Double vitrification of rat embryos at different developmental stages using an identical protocol. Theriogenology 60:445–452PubMedCrossRefGoogle Scholar
  32. Kasai M, Komi JH, Takakamo A, Tsudera H, Sakurai T, Machida T (1990) A simple method for mouse embryo cryopreservation in a low toxicity vitrification solution, without appreciable loss of viability. J Reprod Fertil 89:90–97CrossRefGoogle Scholar
  33. Kuwayama M, Kato O (2000) All-round vitrification method for human oocytes and embryos. J Assist Reprod Genet 17:477Google Scholar
  34. Kuwayama M, Vajta G, Kato O, Leibo SP (2005a) Highly efficient vitrification method for cryopreservation of human oocytes. Reprod Biomed Online 11:300–308PubMedCrossRefGoogle Scholar
  35. Kuwayama M, Vajta G, Ieda S, Kato O (2005b) Comparison of open and closed methods for vitrification of human embryos and the elimination of potential contamination. Reprod Biomed Online 11:608–614PubMedCrossRefGoogle Scholar
  36. Lane M, Forest KT, Lyons EA, Bavister BD (1999a) Live births following vitrification of hamster embryos using a novel containerless technique. Theriogenology 51:167 (abstract)CrossRefGoogle Scholar
  37. Lane M, Schoolcraft WB, Gardner DK, Phil D (1999b) Vitrification of mouse and human blastocysts using a novel cryoloop container-less technique. Fertil Steril 72:1073–1078PubMedCrossRefGoogle Scholar
  38. Larman MG, Gardner DK (2010) Vitrifying mouse oocytes and embryos with super-cooled air. Hum Reprod 25:i265CrossRefGoogle Scholar
  39. Liebermann J, Tucker M, Graham J, Han T, Davis A, Levy M (2002) Blastocyst development after vitrification of multipronuclear zygotes using the felxipet denuding pipette. Reprod Biomed Online 4:146–150PubMedCrossRefGoogle Scholar
  40. Luvoni GC (2000) Current progress on assisted reproduction in dogs and ats: in vitro embryo production. Reprod Nutr Dev 40:505–512PubMedCrossRefGoogle Scholar
  41. Luyet BJ. (1937) The vitrification of organic colloids and of protoplasm. Biodynamica; 1:1–14CrossRefGoogle Scholar
  42. Luyet BJ, Hodapp A (1938) Revival of frog spermatozoa vitrified in liquid air. Proc Meet Soc Exp Biol; 39:433–434CrossRefGoogle Scholar
  43. Luyet BJ, Gehenio PM (1940) Life and death at low temperatures. Biodynamica, Normandy, MOCrossRefGoogle Scholar
  44. Massip A, Van der Zwalmen P, Ectors F (1987) Recent progress in cryopreservation of cattle embryos. Theriogenology 27:69–79CrossRefGoogle Scholar
  45. Matsumoto H, Jiang JY, Tanaka T, Sasada H, Sato E (2001) Vitrification of large quantities of immature bovine oocytes using nylon mesh. Cryobiology 42:139–144PubMedCrossRefGoogle Scholar
  46. Martino A, Pollard JW, Leibo SP (1996) Effect of chilling bovine oocytes on their developmental competence. Mol Reprod Dev; 45(4):503–512PubMedCrossRefGoogle Scholar
  47. Mavrides A, Morroll D (2005) Bypassing the effect of zona pellucida changes on embryo formation following cryopreservation of bovine oocytes. Eur J Obstet Gynecol Reprod Biol 118:66–70PubMedCrossRefGoogle Scholar
  48. Mousson A (1858) Einige Tatsachen betreffend das Schmelzen und Gefrieren des Wassers. An Pfyaft 105:161–174Google Scholar
  49. Muthukumar K, Mangalaraj AM, Kamath MS, George K (2008) Blastocyst cryopreservation: vitrification or slow freeze. Fertil Steril 90:S426–S427CrossRefGoogle Scholar
  50. Paffoni A, Guarneri C, Ferrari S, Restelli L, Nicolosi AE, Scarduelli C, Ragni G (2011) Effects of two vitrification protocols on the developmental potential of human mature oocytes. Reprod Biomed Online 22(3):292–298PubMedCrossRefGoogle Scholar
  51. Petyim S, Makemahar O, Kunathikom S, Choavaratana R, Laokirkkiat P, Penparkkul K (2009) The successful pregnancy and birth of a healthy baby after human blastocyst vitrification using Cryo-E, first case in Siriraj Hospital. J Med Assoc Thai 92:1116–1121PubMedGoogle Scholar
  52. Polge C, Smith AU, Parkes AS (1949) Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature 164:666Google Scholar
  53. Portmann M, Nagy ZP, Behr B (2010) Evaluation of blastocyst survival following vitrification/warming using two different closed carrier systems. Hum Reprod 25:i261Google Scholar
  54. Rall WF, Fahy GM (1985) Ice-free cryopreservation of mouse embryos at -196 degrees C by vitrification. Nature 313(6003):573–575PubMedCrossRefGoogle Scholar
  55. Rall WF, Meyer TK (1989) Zona fracture damage and its avoidance during the cryopreservation of mammalian embryos. Theriogenology 31:683–692PubMedCrossRefGoogle Scholar
  56. Rall WF, Wood MJ, Kirby C, Whittingham DG (1987) Development of mouse embryos cryopreserved by vitrification. J Reprod Fertil 80(2):499–504PubMedCrossRefGoogle Scholar
  57. Rubinsky B, Arav A, DeVries AL (1991) Cryopreservation of oocyte using directional cooling and antifreeze proteins. Cryo Letters 12:93–106Google Scholar
  58. Ruffing NA, Steponkus PL, Pitt RE, Parks JE (1993) Osmometric behavior, hydraulic conductivity, and incidence of intracellular ice formation in bovine oocytes at different developmental stages. Cryobiology 30:562–580PubMedCrossRefGoogle Scholar
  59. Saha S, Otoi T, Takagi M, Boediono A, Sumantri C, Suzuki T (1996) Normal calves obtained after direct transfer of vitrified bovine embryos using ethylene glycol, trehalose, and polyvinylpyrrolidone. Cryobiology 32(6):505–510Google Scholar
  60. Saragusty J, Arav A (2011) Current progress in oocyte and embryo cryopreservation by slow freezing and vitrification. Reproduction 141(1):1–19PubMedCrossRefGoogle Scholar
  61. Schellander K, Brackett BG, Fuhrer F, Schleger W (1988) In vitro fertilization of frozen-thawed cattle oocytes. In: Proceedings of the 11th Congress on animal reproduction and artificial insemination, 26–30Google Scholar
  62. Seki S, Mazur P (2012) Ultra-rapid warming yields high survival of mouse oocytes cooled to −196 °C in dilutions of a standard vitrification solution. PLoS One 7(4):e36058PubMedCrossRefGoogle Scholar
  63. Sugiyama R, Nakagawa K, Shirai A, Sugiyama R, Nishi Y, Kuribayashi Y, Inoue M (2010) Clinical outcomes resulting from the transfer of vitrified human embryos using a new device for cryopreservation (plastic blade). J Assist Reprod Genet 27:161–167PubMedCrossRefGoogle Scholar
  64. Sun X, Li Z, Yi Y, Chen J, Leno GH, Engelhardt JF (2008) Efficient term development of vitrified ferret embryos using a novel pipette chamber technique. Biol Reprod 79:832–840PubMedCrossRefGoogle Scholar
  65. Széll A, Shelton JN (1987) Osmotic and cryoprotective effects of glycerol-sucrose solutions on day-3 mouse embryos. J Reprod Fertil 80(1):309–316PubMedCrossRefGoogle Scholar
  66. Tammann G (1898) Ueber die abhangkeit der Kernr, welche sich in verschiedenen flussigkeiten bilden, von der temperature. Zeitschrift for Physikalische Chemie 25:441–479Google Scholar
  67. Testart J, Lassalle B, Belaisch-Allart J (1986) High pregnancy rate after early human embryo freezing. Fertil Steril 46:268–272PubMedGoogle Scholar
  68. Tsang WH, Chow KL (2009) Mouse embryo cryopreservation utilizing a novel high-capacity vitrification spatula. Biotechniques 46:550–552PubMedCrossRefGoogle Scholar
  69. Vajta G, Holm P, Greve T, Callesen H (1997) Vitrification of porcine embryos using the open pulled straw (OPS) method. Acta Vet Scand 38:349–352PubMedGoogle Scholar
  70. Vajta G, Holm P, Kuwayama M, Booth PJ, Jacobsen H, Greve T, Callesen H (1998) Open pulled straw (OPS) vitrification: a new way to reduce cryoinjuries of bovine ova and embryos. Mol Reprod Dev 51:53–58PubMedCrossRefGoogle Scholar
  71. Vanderzwalmen P, Bertin G, Debauche C, Standaart V, Schoysman E (2000) In vitro survival of metaphase II oocytes (MII) and blastocysts after vitrification in a hemi-straw (HS) system. Fertil Steril 74:S215–S216 (abstract)CrossRefGoogle Scholar
  72. Walton JH Jr, Judd RC (1914) The velocity of crystallization of under cooled water. J Phys Chem 18(9):722–728CrossRefGoogle Scholar
  73. Yavin S, Arav A (2001) Development of immature bovine oocytes vitrified by minimum drop size technique and a new vitrification apparatus (VIT-MASTER). Cryobiology 43:331Google Scholar
  74. Yavin S, Arav A (2007) Measurement of essential physical properties of vitrification solutions. Theriogenology 67(1):81–89PubMedCrossRefGoogle Scholar
  75. Yavin S, Aroyo A, Roth Z, Arav A (2009) Embryo cryopreservation in the presence of low concentration of vitrification solution with sealed pulled straws in liquid nitrogen slush. Hum Reprod 24:797–804PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.FertileSafeTel AvivIsrael

Personalised recommendations