Advertisement

Proteomic Interrogation of Human Chromatin Protein States

  • Natarajan V. Bhanu
  • Benjamin A. GarciaEmail author
Chapter

Abstract

Current epigenetic research encompasses studies on inheritance of stereotypic patterns of chromatin-associated histones and nonhistone proteins, their variant forms, modifications on the DNA as well as proteins and noncoding RNAs, relevant to nuclear-templated cellular events governing vertebrate gene function and differentiation. In recent years, the study of chromatin proteins and their interaction networks have evolved to grouping meaningful recurring marks into chromatin states. Major impetus in the study of chromatin states has been the outstanding improvements in analytical technology, including methodologies for efficient extraction of chromatin and its components, innovative preparatory chemistries, precision instrumentation, analytical layouts with better chemical discrimination, and retooled informatics capabilities. This chapter reviews some important recent developments in this growing field of interest and their potential for uncovering novel proteins and their modulatory roles in chromatin activity. We outline the global profiling of the most abundant of the chromatin proteins, the histones, and their modifications in several model organisms and cellular contexts, besides correlating particular histone marks and their turnover rates to specific chromatin states. A whole nuclear proteome description delineating an integrated workflow for protein preparation, interrogation of chromatin states, and data analysis is illustrated.

Keywords

Chromatin Proteomics Histone Mass spectrometry Posttranslational modification (PTM) Chromatin immunoprecipitation (ChIP) 

References

  1. 1.
    Luger K, Mäder AW, Richmond RK, et al. Crystal structure of the nucleosome core particle at 2.8A resolution. Nature. 1997;389:251–60.PubMedCrossRefGoogle Scholar
  2. 2.
    Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293:1074–80.PubMedCrossRefGoogle Scholar
  3. 3.
    Khare SP, Habib F, Sharma R, et al. HIstome—a relational knowledgebase of human histone proteins and histone modifying enzymes. Nucleic Acids Res. 2012;40:D337–42.PubMedCrossRefGoogle Scholar
  4. 4.
    Chadwick BP, Willard HF. Histone H2A variants and the inactive X chromosome: identification of a second macroH2A variant. Hum Mol Genet. 2001;10:1101–13.PubMedCrossRefGoogle Scholar
  5. 5.
    Tanabe M, Kouzmenko AP, Ito S, et al. Activation of facultatively silenced Drosophila loci associates with increased acetylation of histoneH2AvD. Genes Cells. 2008;13:1279–88.PubMedCrossRefGoogle Scholar
  6. 6.
    Arnaudo AM, Molden RC, Garcia BA. Revealing histone variant induced changes via quantitative proteomics. Crit Rev Biochem Mol Biol. 2011;46:284–94.PubMedCrossRefGoogle Scholar
  7. 7.
    Rasmussen TP, Huang T, Mastrangelo MA, et al. Messenger RNAs encoding mouse histone macroH2A1 isoforms are expressed at similar levels in male and female cells and result from alternative splicing. Nucleic Acids Res. 1999;27:3685–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Garcia BA, Thomas CE, Kelleher NL, et al. Tissue-specific expression and post-translational modification of histone H3 variants. J Proteome Res. 2008;7:4225–36.PubMedCrossRefGoogle Scholar
  9. 9.
    Kamakaka RT, Biggins S. Histone variants: deviants? Genes Dev. 2005;19:295–310.PubMedCrossRefGoogle Scholar
  10. 10.
    Talbert PB, Henikoff S. Histone variants: ancient wrap artists of the epigenome. Nat Rev Mol Cell Biol. 2010;11:264–75.PubMedCrossRefGoogle Scholar
  11. 11.
    Tan M, Luo H, Lee S, et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell. 2011;146:1016–28.PubMedCrossRefGoogle Scholar
  12. 12.
    Garcia BA, Hake SB, Diaz RL, et al. Organismal differences in post-translational modifications in histones H3 and H4. J Biol Chem. 2007;282:7641–55.PubMedCrossRefGoogle Scholar
  13. 13.
    Zee BM, Levin RS, Dimaggio PA. Global turnover of histone post-translational modifications and variants in human cells. Epigenetics Chromatin. 2010;3:22–33.PubMedCrossRefGoogle Scholar
  14. 14.
    Shogren-Knaak M, Ishii H, Sun JM, et al. Histone H4K16 acetylation controls chromatin structure and protein interactions. Science. 2006;311:844–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Martin C, Zhang Y. The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol. 2005;6:838–49.PubMedCrossRefGoogle Scholar
  16. 16.
    Kouzarides T. Chromatin modifications and their function. Cell. 2007;128:693–705.PubMedCrossRefGoogle Scholar
  17. 17.
    Campos EI, Reinberg D. Histones: annotating chromatin. Annu Rev Genet. 2009;43:559–99.PubMedCrossRefGoogle Scholar
  18. 18.
    Fischle W, Wang Y, Allis CD. Histone and chromatin cross-talk. Curr Opin Cell Biol. 2003;15:172–83.PubMedCrossRefGoogle Scholar
  19. 19.
    Rando OJ. Combinatorial complexity in chromatin structure and function: revisiting the histone code. Curr Opin Genet Dev. 2012;22:148–55.PubMedCrossRefGoogle Scholar
  20. 20.
    Hake SB, Garcia BA, Duncan EM, et al. Expression patterns and post-translational modifications associated with mammalian histone H3 variants. J Biol Chem. 2006;281:559–68.PubMedCrossRefGoogle Scholar
  21. 21.
    Jones PL, Veenstra GJ, Wade PA, et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet. 1998;19:187–91.PubMedCrossRefGoogle Scholar
  22. 22.
    Nan X, Ng HH, Johnson CA, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 1998;393:386–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Okitsu CY, Hsieh CL. DNA methylation dictates histone H3K4 methylation. Mol Cell Biol. 2007;27:2746–57.PubMedCrossRefGoogle Scholar
  24. 24.
    Weber M, Hellmann I, Stadler MB, et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet. 2007;39:457–66.PubMedCrossRefGoogle Scholar
  25. 25.
    Fan S, Fang F, Zhang X, et al. Putative zinc finger protein binding sites are over-represented in the boundaries of methylation-resistant CpG islands in the human genome. PLoS One. 2007;2:e1184.PubMedCrossRefGoogle Scholar
  26. 26.
    Guccione EF, Martinato G, Finocchiaro L, et al. Myc-binding-site recognition in the human genome is determined by chromatin context. Nat Cell Biol. 2006;8:764–70.PubMedCrossRefGoogle Scholar
  27. 27.
    Turker MS. The establishment and maintenance of DNA methylation patterns in mouse somatic cells. Semin Cancer Biol. 1999;9:329–37.PubMedCrossRefGoogle Scholar
  28. 28.
    Pradhan S, Chin HG, Estève PO, et al. SET7/9 mediated methylation of non-histone proteins in mammalian cells. Epigenetics. 2009;4:383–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Bernstein BE, Kamal M, Lindblad-Toh K, et al. Genomic maps and comparative analysis of histone modifications in human and mouse. Cell. 2005;120:169–81.PubMedCrossRefGoogle Scholar
  30. 30.
    ENCODE Project Consortium. The ENCODE (ENCyclopedia Of DNA Elements) Project. Science. 2004;306:636–40.CrossRefGoogle Scholar
  31. 31.
    Gerstein MB, Lu ZJ, van Nostrand EL, et al. Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science. 2010;330:1775–87.PubMedCrossRefGoogle Scholar
  32. 32.
    Rakyan VK, Hildmann T, Novik KL, et al. DNA methylation profiling of the human major histocompatibility complex: a pilot study for the human epigenome project. PLoS Biol. 2004;2:e405.PubMedCrossRefGoogle Scholar
  33. 33.
    Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol. 2010;28:1057–68.PubMedCrossRefGoogle Scholar
  34. 34.
    Torrente MP, Zee BM, Young NL, et al. Proteomic interrogation of human chromatin. PLoS One. 2011;6:e24747.PubMedCrossRefGoogle Scholar
  35. 35.
    LeRoy G, Weston JT, Zee BM. Heterochromatin protein 1 is extensively decorated with histone code-like post-translational modifications. Mol Cell Proteomics. 2009;8:2432–42.PubMedCrossRefGoogle Scholar
  36. 36.
    Leroy G, Chepelev I, Dimaggio PA, et al. Proteogenomic characterization and mapping of nucleosomes decoded by Brd and HP1 proteins. Genome Biol. 2012;13:R68.PubMedCrossRefGoogle Scholar
  37. 37.
    Byrum SD, Taverna SD, Tackett AJ. Quantitative analysis of histone exchange for transcriptionally active chromatin. J Clin Bioinforma. 2011;1:17–22.PubMedCrossRefGoogle Scholar
  38. 38.
    Trinkle-Mulcahy L, Boulon S, Lam YW. Identifying specific protein interaction partners using quantitative mass spectrometry and bead proteomes. J Cell Biol. 2008;183:223–39.PubMedCrossRefGoogle Scholar
  39. 39.
    Griesenbeck J, Boeger H, Strattan JS, et al. Affinity purification of specific chromatin segments from chromosomal loci in yeast. Mol Cell Biol. 2003;23:9275–82.PubMedCrossRefGoogle Scholar
  40. 40.
    Dejardin J, Kingston RE. Purification of proteins associated with specific genomic loci. Cell. 2009;136:175–86.PubMedCrossRefGoogle Scholar
  41. 41.
    Garcia BA, Pesavento JJ, Mizzen CA, et al. Pervasive combinatorial modification of histone H3 in human cells. Nat Methods. 2007;4(6):487–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Young NL, Plazas-Mayorca MD, DiMaggio PA, et al. Collective mass spectrometry approaches reveal broad and combinatorial modification of high mobility group protein A1a. J Am Soc Mass Spectrom. 2010;21:960–70.PubMedCrossRefGoogle Scholar
  43. 43.
    Garcia BA, Busby SA, Shabanowitz J, et al. Resetting the epigenetic histone code in the MRL-lpr/lpr mouse model of lupus by histone deacetylase inhibition. J Proteome Res. 2005;4:2032–42.PubMedCrossRefGoogle Scholar
  44. 44.
    Garcia BA, Mollah S, Ueberheide BM, et al. Chemical derivatization of histones for facilitated analysis by mass spectrometry. Nat Protoc. 2007;2:933–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Plazas-Mayorca MD, Bloom JS, Zeissler U, et al. Quantitative proteomics reveals direct and indirect alterations in the histone code following methyltransferase knockdown. Mol Biosyst. 2010;6:1719–29.PubMedCrossRefGoogle Scholar
  46. 46.
    Zee BM, Levin RS, Xu B. In vivo residue-specific histone methylation dynamics. J Biol Chem. 2010;285:3341–50.PubMedCrossRefGoogle Scholar
  47. 47.
    Pesavento JJ, Yang H, Kelleher NL, et al. Certain and progressive methylation of histone H4 at lysine 20 during the cell cycle. Mol Cell Biol. 2008;28:468–86.PubMedCrossRefGoogle Scholar
  48. 48.
    Zee BM, Britton LM, Wolle D, et al. Origins and formation of histone methylation across the human cell cycle. Mol Cell Biol. 2012;32:2503–14.PubMedCrossRefGoogle Scholar
  49. 49.
    Schwertman P, Lagarou A, Dekkers DH, et al. UV-sensitive syndrome protein UVSSA recruits USP7 to regulate transcription-coupled repair. Nat Genet. 2012;44:598–602.PubMedCrossRefGoogle Scholar
  50. 50.
    Migliori V, Müller J, Phalke S, et al. Symmetric dimethylation of H3R2 is a newly identified histone mark that supports euchromatin maintenance. Nat Struct Mol Biol. 2012;19:136–44.PubMedCrossRefGoogle Scholar
  51. 51.
    Cuomo A, Moretti S, Minucci S, et al. SILAC-based proteomic analysis to dissect the “histone modification signature” of human breast cancer cells. Amino Acids. 2011;41:387–99.PubMedCrossRefGoogle Scholar
  52. 52.
    Molina H, Yang Y, Ruch T, et al. Temporal profiling of the adipocyte proteome during differentiation using a five-plex SILAC based strategy. J Proteome Res. 2009;8:48–58.PubMedCrossRefGoogle Scholar
  53. 53.
    Wiśniewski JR, Zougman A, Krüger S, et al. Constitutive and dynamic phosphorylation and acetylation sites on NUCKS, a hypermodified nuclear protein, studied by quantitative proteomics. Proteins. 2008;73:710–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Nikolov M, Stützer A, Mosch K, et al. Chromatin affinity purification and quantitative mass spectrometry defining the interactome of histone modification patterns. Mol Cell Proteomics. 2011;10:M110.005371.PubMedCrossRefGoogle Scholar
  55. 55.
    Montes de Oca R, Shoemaker CJ, Gucek M, et al. Barrier-to-autointegration factor proteome reveals chromatin-regulatory partners. PLoS One. 2009;4:e7050.PubMedCrossRefGoogle Scholar
  56. 56.
    Dephoure N, Gygi SP. Hyperplexing: a method for higher-order multiplexed quantitative proteomics provides a map of the dynamic response to rapamycin in yeast. Sci Signal. 2012;5:rs2.PubMedCrossRefGoogle Scholar
  57. 57.
    Ross PL, Huang YN, Marchese JN, et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics. 2004;3:1154–69.PubMedCrossRefGoogle Scholar
  58. 58.
    Shiio Y, Donohoe S, Yi EC. Quantitative proteomic analysis of Myc oncoprotein function. EMBO J. 2002;19:5088–96.CrossRefGoogle Scholar
  59. 59.
    Shiio Y, Eisenman RN, Yi EC, et al. Quantitative proteomic analysis of chromatin-associated factors. J Am Soc Mass Spectrom. 2003;14:696–703.PubMedCrossRefGoogle Scholar
  60. 60.
    Himeda CL, Ranish JA, Hauschka SD. Quantitative proteomic identification of MAZ as a transcriptional regulator of muscle-specific genes in skeletal and cardiac myocytes. Mol Cell Biol. 2008;28:6521–35.PubMedCrossRefGoogle Scholar
  61. 61.
    Andersen JS, Lyon CE, Fox AH, et al. Directed proteomic analysis of the human nucleolus. Curr Biol. 2002;12:1–11.PubMedCrossRefGoogle Scholar
  62. 62.
    Baliban RC, Dimaggio PA, Plazas-Mayorca MD, et al. PILOT PROTEIN: identification of unmodified and modified proteins via high-resolution mass spectrometry and mixed-integer linear optimization. J Proteome Res. 2012;11:4615–29.PubMedCrossRefGoogle Scholar
  63. 63.
    Du YC, Gu S, Zhou J, et al. The dynamic alterations of H2AX complex during DNA repair detected by a proteomic approach reveal the critical roles of Ca(2+)/calmodulin in the ionizing radiation-induced cell cycle arrest. Mol Cell Proteomics. 2006;5:1033–44.PubMedCrossRefGoogle Scholar
  64. 64.
    Ivaska J, Pallari HM, Nevo J, et al. Novel functions of vimentin in cell adhesion, migration, and signaling. Exp Cell Res. 2007;313:2050–62.PubMedCrossRefGoogle Scholar
  65. 65.
    Kubota T, Hiraga S, Yamada K. Quantitative proteomic analysis of chromatin reveals that Ctf18 Acts in the DNA replication checkpoint. Mol Cell Proteomics. 2011;10:M110.005561.PubMedCrossRefGoogle Scholar
  66. 66.
    Kadonaga JT, Tjian R. Affinity purification of sequence-specific DNA binding proteins. Proc Natl Acad Sci USA. 1986;83:5889–93.PubMedCrossRefGoogle Scholar
  67. 67.
    Griffin TJ, Aebersold R. Advances in proteome analysis by mass spectrometry. J Biol Chem. 2001;276:45497–500.PubMedCrossRefGoogle Scholar
  68. 68.
    Himeda CL, Ranish JA, Angello JC, et al. Quantitative proteomic identification of six4 as the trex-binding factor in the muscle creatine kinase enhancer. Mol Cell Biol. 2004;24:2132–43.PubMedCrossRefGoogle Scholar
  69. 69.
    Nordhoff E, Krogsdam AM, Jorgensen HF, et al. Rapid identification of DNA-binding proteins by mass spectrometry. Nat Biotechnol. 1999;17:884–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Mittler G, Butter F, Mann M. A SILAC-based DNA protein interaction screen that identifies candidate binding proteins to functional DNA elements. Genome Res. 2009;19:284–93.PubMedCrossRefGoogle Scholar
  71. 71.
    Butala M, Busby SJ, Lee DJ. DNA sampling: a method for probing protein binding at specific loci on bacterial chromosomes. Nucleic Acids Res. 2009;37:e37.PubMedCrossRefGoogle Scholar
  72. 72.
    Wu CH, Chen S, Shortreed MR. Sequence-specific capture of protein-DNA complexes for mass spectrometric protein identification. PLoS One. 2011;6:e26217.PubMedCrossRefGoogle Scholar
  73. 73.
    Bock I, Dhayalan A, Kudithipudi S, et al. Detailed specificity analysis of antibodies binding to modified histone tails with peptide arrays. Epigenetics. 2011;6:256–63.PubMedCrossRefGoogle Scholar
  74. 74.
    Fuchs SM, Krajewski K, Baker R, et al. Influence of combinatorial histone modifications on antibody and effector protein recognition. Curr Biol. 2011;21:53–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Rothbart SB, Krajewski K, Strahl BD, et al. Peptide microarrays to interrogate the “histone code”. Methods Enzymol. 2012;512:107–35.PubMedCrossRefGoogle Scholar
  76. 76.
    Rothbart SB, Lin S, Britton LM, et al. Poly-acetylated chromatin signatures are preferred epitopes for site-specific histone H4 acetyl antibodies. Sci Rep. 2012;2:489.PubMedCrossRefGoogle Scholar
  77. 77.
    Iyer VR, Horak CE, Scafe CS, et al. Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature. 2001;409:533–8.PubMedCrossRefGoogle Scholar
  78. 78.
    Johnson DS, Mortazavi A, Myers RM, et al. Genome-wide mapping of in vivo protein-DNA interactions. Science. 2007;316:1497–502.PubMedCrossRefGoogle Scholar
  79. 79.
    Robertson G, Hirst M, Bainbridge M, et al. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods. 2007;4:651–7.PubMedCrossRefGoogle Scholar
  80. 80.
    Bernstein BE, Humphrey EL, Erlich RL, et al. Methylation of histone H3 Lys 4 in coding regions of active genes. Proc Natl Acad Sci. 2002;99:8695–700.PubMedCrossRefGoogle Scholar
  81. 81.
    Reid JL, Iyer VR, Brown PO, et al. Coordinate regulation of yeast ribosomal protein genes is associated with targeted recruitment of Esa1 histone acetylase. Mol Cell. 2000;6:1297–307.PubMedCrossRefGoogle Scholar
  82. 82.
    Kurdistani SK, Tavazoie S, Grunstein M. Mapping global histone acetylation patterns to gene expression. Cell. 2004;117:721–33.PubMedCrossRefGoogle Scholar
  83. 83.
    Kondo Y, Shen L, Yan PS, et al. Chromatin immunoprecipitation microarrays for identification of genes silenced by histone H3 lysine 9 methylation. Proc Natl Acad Sci USA. 2004;101:7398–403.PubMedCrossRefGoogle Scholar
  84. 84.
    Miao F, Natarajan R. Mapping global histone methylation patterns in the coding regions of human genes. Mol Cell Biol. 2005;25:4650–61.PubMedCrossRefGoogle Scholar
  85. 85.
    Olguin-Lamas A, Madec E, Hovasse A, et al. A novel Toxoplasma gondii nuclear factor TgNF3 is a dynamic chromatin-associated component, modulator of nucleolar architecture and parasite virulence. PLoS Pathog. 2011;7:e1001328.PubMedCrossRefGoogle Scholar
  86. 86.
    Lu H, Cui J, Gunewardena S, et al. Hepatic ontogeny and tissue distribution of mRNAs of epigenetic modifiers in mice using RNA-sequencing. Epigenetics. 2012;7:914–29.PubMedCrossRefGoogle Scholar
  87. 87.
    Bua DJ, Kuo AJ, Cheung P, et al. Epigenome microarray platform for proteome-wide dissection of chromatin-signaling networks. PLoS One. 2009;4:e6789.PubMedCrossRefGoogle Scholar
  88. 88.
    Chan DW, Wang Y, Wu M. Unbiased proteomic screen for binding proteins to modified lysines on histone H3. Proteomics. 2009;9:2343–54.PubMedCrossRefGoogle Scholar
  89. 89.
    Liu H, Galka M, Iberg A, et al. Systematic identification of methyllysine-driven interactions for histone and nonhistone targets. J Proteome Res. 2010;9:5827–36.PubMedCrossRefGoogle Scholar
  90. 90.
    Vermeulen M, Eberl HC, Matarese F. Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell. 2010;142:967–80.PubMedCrossRefGoogle Scholar
  91. 91.
    Ben-Saadon R, Zaaroor D, Ziv T, et al. The polycomb protein Ring1B generates self atypical mixed ubiquitin chains required for its in vitro histone H2A ligase activity. Mol Cell. 2006;24:701–11.PubMedCrossRefGoogle Scholar
  92. 92.
    Buchwald G, Stoop P, Weichenrieder O, et al. Structure and E3-ligase activity of the Ring-Ring complex of polycomb proteins Bmi1 and Ring1b. EMBO J. 2006;25:2465–74.PubMedCrossRefGoogle Scholar
  93. 93.
    Wang H, Wang L, Erdjument-Bromage H, et al. Role of histone H2A ubiquitination in polycomb silencing. Nature. 2004;431:873–8.PubMedCrossRefGoogle Scholar
  94. 94.
    Eissenberg JC, James TC, Foster-Hartnett DM, et al. Mutation in a heterochromatin-specific chromosomal protein is associated with suppression of position-effect variegation in Drosophila melanogaster. Proc Natl Acad Sci USA. 1990;87:9923–7.PubMedCrossRefGoogle Scholar
  95. 95.
    De Lucia F, Ni JQ, Vaillant C, et al. HP1 modulates the transcription of cell-cycle regulators in Drosophila melanogaster. Nucleic Acids Res. 2005;33:2852–8.PubMedCrossRefGoogle Scholar
  96. 96.
    Kwon SH, Florens L, Swanson SK, et al. Heterochromatin protein 1 (HP1) connects the FACT histone chaperone complex to the phosphorylated CTD of RNA polymerase II. Genes Dev. 2010;24:2133–45.PubMedCrossRefGoogle Scholar
  97. 97.
    Lin CH, Li B, Swanson S, et al. Heterochromatin protein 1a stimulates histone H3 lysine 36 demethylation by the Drosophila KDM4A demethylase. Mol Cell. 2008;32:696–706.PubMedCrossRefGoogle Scholar
  98. 98.
    Vakoc CR, Mandat SA, Olenchock BA, et al. Histone H3 lysine 9 methylation and HP1gamma are associated with transcription elongation through mammalian chromatin. Mol Cell. 2005;19:381–91.PubMedCrossRefGoogle Scholar
  99. 99.
    Fritsch L, Robin P, Mathieu JR, et al. A subset of the histone H3 lysine 9 methyltransferases Suv39h1, G9a, GLP, and SETDB1 participate in a multimeric complex. Mol Cell. 2010;37:46–56.PubMedCrossRefGoogle Scholar
  100. 100.
    Murzina N, Verreault A, Laue E, et al. Heterochromatin dynamics in mouse cells: interaction between chromatin assembly factor 1 and HP1 proteins. Mol Cell. 1999;4:529–40.PubMedCrossRefGoogle Scholar
  101. 101.
    Nielsen AL, Sanchez C, Ichinose H, et al. Selective interaction between the chromatin-remodeling factor BRG1 and the heterochromatin-associated protein HP1alpha. EMBO J. 2002;21:5797–806.PubMedCrossRefGoogle Scholar
  102. 102.
    Pak DT, Pflumm M, Chesnokov I, et al. Association of the origin recognition complex with heterochromatin and HP1 in higher eukaryotes. Cell. 1997;91:311–23.PubMedCrossRefGoogle Scholar
  103. 103.
    Fodor BD, Kubicek S, Yonezawa M. Jmjd2b antagonizes H3K9 trimethylation at pericentric heterochromatin in mammalian cells. Genes Dev. 2006;20:1557–62.PubMedCrossRefGoogle Scholar
  104. 104.
    Ayoub N, Jeyasekharan AD, Bernal JA, et al. HP1-beta mobilization promotes chromatin changes that initiate the DNA damage response. Nature. 2008;453:682–6.PubMedCrossRefGoogle Scholar
  105. 105.
    Huang DW, Fanti L, Pak DT, et al. Distinct cytoplasmic and nuclear fractions of Drosophila heterochromatin protein 1: their phosphorylation levels and associations with origin recognition complex proteins. J Cell Biol. 1998;142:307–18.PubMedCrossRefGoogle Scholar
  106. 106.
    Lomberk G, Bensi D, Fernandez-Zapico ME, et al. Evidence for the existence of an HP1-mediated subcode within the histone code. Nat Cell Biol. 2006;8:407–15.PubMedCrossRefGoogle Scholar
  107. 107.
    Fusco A, Fedele M. Roles of HMGA proteins in cancer. Nat Rev Cancer. 2007;7:899–910.PubMedCrossRefGoogle Scholar
  108. 108.
    Shah SN, Resar LM. High mobility group A1 and cancer: potential biomarker and therapeutic target. Histol Histopathol. 2012;27:5675–9.Google Scholar
  109. 109.
    Sgarra R, Maurizio E, Zammitti S, et al. Macroscopic differences in HMGA oncoproteins post-translational modifications: C-ter phosphorylation of HMGA2 affects its DNA binding properties. J Proteome Res. 2009;8:2978–89.PubMedCrossRefGoogle Scholar
  110. 110.
    McKittrick E, Gafken PR, Ahmad K, et al. Histone H3.3 is enriched in covalent modifications associated with active chromatin. Proc Natl Acad Sci USA. 2004;101:1525–30.PubMedCrossRefGoogle Scholar
  111. 111.
    Kim TH, Barrera LO, Zheng M, et al. A high-resolution map of active promoters in the human genome. Nature. 2005;436:876–80.PubMedCrossRefGoogle Scholar
  112. 112.
    Lee TI, Jenner RG, Boyer LA, et al. Control of developmental regulators by polycomb in human embryonic stem cells. Cell. 2006;125:301–13.PubMedCrossRefGoogle Scholar
  113. 113.
    Roh TY, Cuddapah S, Cui K. The genomic landscape of histone modifications in human T cells. Proc Natl Acad Sci USA. 2006;103:15782–7.PubMedCrossRefGoogle Scholar
  114. 114.
    Bernstein BE, Mikkelsen TS, Xie X, et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell. 2006;125:315–26.PubMedCrossRefGoogle Scholar
  115. 115.
    Lennartsson A, Ekwall K. Histone modification patterns and epigenetic codes. Biochim Biophys Acta. 2009;1790:863–8.PubMedCrossRefGoogle Scholar
  116. 116.
    Ernst J, Kellis M. Discovery and characterization of chromatin states for systematic annotation of the human genome. Nat Biotechnol. 2010;28:817–25.PubMedCrossRefGoogle Scholar
  117. 117.
    Ernst J, Kheradpour P, Mikkelsen TS, et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature. 2011;473:43–9.PubMedCrossRefGoogle Scholar
  118. 118.
    Anzick SL, Kononen J, Walker RL, et al. AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science. 1997;277:965–8.PubMedCrossRefGoogle Scholar
  119. 119.
    Borrow J, Stanton Jr VP, Andresen JM, et al. The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nat Genet. 1996;14:33–41.PubMedCrossRefGoogle Scholar
  120. 120.
    Zhu P, Martin E, Mengwasser J, et al. Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. Cancer Cell. 2004;5:455–63.PubMedCrossRefGoogle Scholar
  121. 121.
    Zhang Z, Yamashita H, Toyama T, et al. HDAC6 expression is correlated with better survival in breast cancer. Clin Cancer Res. 2004;10:6962–8.PubMedCrossRefGoogle Scholar
  122. 122.
    Anderson KC, Carrasco RD. Pathogenesis of myeloma. Annu Rev Pathol. 2011;6:249–74.PubMedCrossRefGoogle Scholar
  123. 123.
    Kuo AJ, Cheung P, Chen K, et al. NSD2 links dimethylation of histone H3 at lysine 36 to oncogenic programming. Mol Cell. 2011;44:609–20.PubMedCrossRefGoogle Scholar
  124. 124.
    Garcia BA, Busby SA, Barber CM, et al. Characterization of phosphorylation sites on histone H1 isoforms by tandem mass spectrometry. J Proteome Res. 2004;3:1219–27.PubMedCrossRefGoogle Scholar
  125. 125.
    Garcia BA, Joshi S, Thomas CE, Chitta RK, et al. Comprehensive phosphoprotein analysis of linker histone H1 from Tetrahymena thermophila. Mol Cell Proteomics. 2006;5:1593–609.PubMedCrossRefGoogle Scholar
  126. 126.
    Garcia BA, Platt MD, Born TL, et al. Protein profile of osteoarthritic human articular cartilage using tandem mass spectrometry. Rapid Commun Mass Spectrom. 2006;20:2999–3006.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations