Proteome Analysis of Chromatin Complexes in Differentiating Stem Cells

  • Ariane Watson
  • Gerard Cagney


Regulation of gene expression by proteins associated with chromatin is a major, yet poorly understood, feature of differentiation and development. Recent genomic studies have highlighted the role of chromatin regulatory proteins in pathologies affecting cellular proliferation and cell cycle, such as cancer. Mass spectrometry-based proteomics approaches have, in the last decade, provided a wealth of information on the dynamic nature of the proteome during cellular differentiation. Label-based approaches have predominated the literature, however, with the development of increasingly sensitive mass spectrometers and liquid chromatographic systems; label-free techniques offer a compelling alternative. Using these approaches, a vast repertoire of proteins have been identified in the proteome of undifferentiated and differentiating stem cells, including transcription factors, chromatin-modifying complexes, histone-modifying enzymes and signalling proteins which act in concert to regulate gene expression. Given the recent correlation between mutations in epigenetic machinery and the development and progression of various cancers, application of these approaches to the study cancer cell proteomes could provide valuable insights into the role of epigenetic reregulation in tumourogenesis.


Embryonic stem cells NTERA-2 Differentiation Proteomics Mass spectrometry Chromatin Epigenetics Polycomb group proteins Pluripotency Self-renewal 


  1. 1.
    Odorico JS, Kaufman DS, Thomson JA. Multilineage differentiation from human embryonic stem cell lines. Stem Cells. 2001;19(3):193–204.PubMedCrossRefGoogle Scholar
  2. 2.
    Bolli R, Chugh AR, D’Amario D, Loughran JH, Stoddard MF, Ikram S, et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trail. Lancet. 2011;378(9806):1847–57.PubMedCrossRefGoogle Scholar
  3. 3.
    Ruff CA, Fehlings MG. Neural stem cells in regenerative medicine: bridging the gap. Panminerva Med. 2010;52(2):125–47.PubMedGoogle Scholar
  4. 4.
    Takawa M, Masuda K, Kunizaki M, Daigo Y, Takagi K, Iwai Y, et al. Validation of the histone methyltransferase EZH2 as a therapeutic target for various types of human cancer and as a prognostic marker. Cancer Sci. 2011;102(7):1298–305.PubMedCrossRefGoogle Scholar
  5. 5.
    Wu SM, Hochedlinger K. Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nat Cell Biol. 2011;13(5):497–505.PubMedCrossRefGoogle Scholar
  6. 6.
    Strauss R, Hamerlik P, Lieber A, Bartek J. Regulation of stem cell plasticity: mechanisms and relevance to tissue biology and cancer. Mol Ther. 2012;20(5):887–97.PubMedCrossRefGoogle Scholar
  7. 7.
    Vincent A, Van Seuningen I. Epigenetics, stem cells and epithelial cell fate. Differentiation. 2009;78(2–3):99–107.PubMedCrossRefGoogle Scholar
  8. 8.
    Young RA. Control of the embryonic stem cell state. Cell. 2011;144(6):940–54.PubMedCrossRefGoogle Scholar
  9. 9.
    Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403(6765):41–5.PubMedCrossRefGoogle Scholar
  10. 10.
    Margueron R, Reinberg D. The Polycomb complex PRC2 and its mark in life. Nature. 2011;469(7330):343–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Piatti P, Zeilner A, Lusser A. ATP-dependent chromatin remodeling factors and their roles in affecting nucleosome fiber composition. Int J Mol Sci. 2011;12(10):6544–65.PubMedCrossRefGoogle Scholar
  12. 12.
    Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012;150(1):12–27.PubMedCrossRefGoogle Scholar
  13. 13.
    Bracken AP, Kleine-Kohlbrecher D, Dietrich N, Pasini D, Gargiulo G, Beekman C, et al. The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev. 2007;21(5):525–30.PubMedCrossRefGoogle Scholar
  14. 14.
    Popovic R, Licht JD. Emerging epigenetic targets and therapies in cancer medicine. Cancer Discov. 2012;2(5):405–13.PubMedCrossRefGoogle Scholar
  15. 15.
    Pal R, Ravindran G. Assessment of pluripotent and multilineage differentiation potential of NTERA-2 cells as a model for studying human embryonic stem cells. Cell Prolif. 2006;39(6):585–98.PubMedCrossRefGoogle Scholar
  16. 16.
    Steen H, Mann M. The ABC’s (and XYZ’s) of peptide sequencing. Nat Rev Mol Cell Biol. 2004 Sep;5(9):699–711.CrossRefGoogle Scholar
  17. 17.
    Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics. 2002;1(5):376–86.PubMedCrossRefGoogle Scholar
  18. 18.
    Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics. 2004;3(12):1154–69.PubMedCrossRefGoogle Scholar
  19. 19.
    Chelius D, Bondarenko PV. Quantitative profiling of proteins in complex mixtures using liquid chromatography and mass spectrometry. J Proteome Res. 2002;1(4):317–23.PubMedCrossRefGoogle Scholar
  20. 20.
    Liu H, Sadygov RG, Yates 3rd JR. A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem. 2004;76(14):4193–201.PubMedCrossRefGoogle Scholar
  21. 21.
    Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26(12):1367–72.PubMedCrossRefGoogle Scholar
  22. 22.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2006;126(4):663–76.PubMedCrossRefGoogle Scholar
  23. 23.
    Takahashi K, Tanabe K, Ohnuki MA, Narita M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.PubMedCrossRefGoogle Scholar
  24. 24.
    van den Berg DLC, Snoek T, Mullin NP, Yates A, et al. An Oct4-centered protein interaction network in embryonic stem cells. Cell Stem Cell. 2010;6:369–81.PubMedCrossRefGoogle Scholar
  25. 25.
    Pardo M, Lang B, Yu LA, Proser H, et al. An expanded Oct4 interaction network; implication for stem cell biology, development and disease. Cell Stem Cell. 2010;6:382–95.PubMedCrossRefGoogle Scholar
  26. 26.
    Chaerkady R, Kerr CL, Marimuthu A, Kelkar DS, et al. Temporal analysis of neural differentiation using quantitative proteomics. J Proteome Res. 2009;8(3):1315–26.PubMedCrossRefGoogle Scholar
  27. 27.
    Sarkar P, Collier TS, Randalf SM, Muddiman DC, et al. The subcellular proteome of undifferentiated human embryonic stem cells. J Proteomics. 2012;12:1–10.Google Scholar
  28. 28.
    Jadaliha M, Lee HJ, Pakzad M, Fathi A, Jeong SK, et al. Quantitative proteomic analysis of human embryonic stem cell differentiation by 8-plex iTRAQ labelling. PLoS One. 2012;7(6):e38532.PubMedCrossRefGoogle Scholar
  29. 29.
    Pewsey E, Bruce C, Tonge P, Evans C, et al. Nuclear proteome dynamics in differentiating embryonic carcinoma (NTERA-2) cells. J Proteome Res. 2010;9:3412–26.PubMedCrossRefGoogle Scholar
  30. 30.
    Cagney G, Park S, Chung C, Tong B, O’Dushlaine C, Shields DC, et al. Human tissue profiling with multidimensional protein identification technology. J Proteome Res. 2005;4(5):1757–67. PubMed PMID: 16212430.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.University College Dublin, The Conway Institute, School of Biomolecular and Biomedical ScienceBelfield, Dublin, 4Ireland

Personalised recommendations