Application of On-Chip Device Heating for BTI Investigations

  • Thomas AichingerEmail author
  • Gregor Pobegen
  • Michael Nelhiebel


This chapter introduces a new experimental approach allowing to switch the temperature of a device in a very fast and defined way. The new hardware tool, which we will herein refer to as polycrystalline silicon heater or simply poly-heater, allows overcoming previously strict experimental limitations regarding the speed of temperature variation and the accessibility of temperature range. Having broadened one’s mind to the possibility of switching the temperature very fast at arbitrary points in time, the poly-heater technique opens up unprecedented experimental capabilities for bias temperature instability (BTI) characterization. For instance, one can achieve decoupling of stress and characterization temperature by making use of degradation quenching. Such or similar experiments can probe our understanding of the BTI physics in a novel manner.


Thermal Resistance Target Temperature Drain Current Gate Bias Degradation Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was jointly funded by the Austrian Research Promotion Agency (FFG, Project No. 831163) and the Carinthian Economic Promotion Fund (KWF, contract KWF-1521|22741|34186).


  1. 1.
    W. Muth, W. Walter, in Proc.ESSDERC (2007), pp. 1251–1262Google Scholar
  2. 2.
    C. Schluender, R.P. Vollertsen, W. Gustin, H. Reisinger, in Proc.ESSDERC (2007), pp. 131–134Google Scholar
  3. 3.
    T.K. Kang, C.S. Wang, K.C. Su, Jpn.J.Appl.Phys. 46, 7639 (2007)Google Scholar
  4. 4.
    C.S. Wang, W.C. Chang, W.S. Ke, C.T. Chiang, C.F. Lee, K.C. Su, in Proc.SSDM (2005), pp. 580–581Google Scholar
  5. 5.
    C.S. Wang, W.C. Chang, W.S. Ke, K.C. Su, in Proc.IIRW (2006), pp. 136–138Google Scholar
  6. 6.
    H. Köck, V. Košel, C. Djelassi, M. Glavanovics, D. Pogany, Microelectron.Reliab. 49, 1132 (2009)CrossRefGoogle Scholar
  7. 7.
    A. Kelleha, W. Lane, IEEE Trans.Nucl.Sci. 43, 997 (1996)CrossRefGoogle Scholar
  8. 8.
    W. Liu, M. Asheghi, J. Appl. Phys. 98, 123523 (2005)CrossRefGoogle Scholar
  9. 9.
    A. Cardoso, A.K. Srivastava, J. Vac. Sci. Tech. B 19, 397 (2001)CrossRefGoogle Scholar
  10. 10.
    H. Ibele, K. Reitinger, in IEEE Semiconductor Wafer Test Workshop (2005)Google Scholar
  11. 11.
    P. Leturcq, J.M. Dorkel, A. Napieralski, E. Lachiver, Trans. Elec. Dev. 34, 1147 (1987)CrossRefGoogle Scholar
  12. 12.
    C.J. Glassbrenner, G.A. Slack, Phys. Rev. 134, A1058 (1964)CrossRefGoogle Scholar
  13. 13.
    G.A. Slack, J. Appl. Phys. 35, 3460 (1964)CrossRefGoogle Scholar
  14. 14.
    T. Aichinger, M. Nelhiebel, T. Grasser, in Proc.ESREF (2008), pp. 1178–1184Google Scholar
  15. 15.
    T. Aichinger, M. Nelhiebel, T. Grasser, in Proc.IRPS (2009), pp. 2–7Google Scholar
  16. 16.
    H. Reisinger, O. Blank, W. Heinrigs, A. Mühlhoff, W. Gustin, C. Schlünder, in Proc.IRPS (2006), pp. 448–453Google Scholar
  17. 17.
    B. Kaczer, V. Arkhipov, R. Degraeve, N. Collaert, G. Groeseneken, M. Goodwin, in Proc.IRPS (2005), pp. 381–387Google Scholar
  18. 18.
    G. Pobegen, T. Aichinger, M. Nelhiebel, T. Grasser, in IEDM Tech. Dig. (2011), pp. 27.3.1–27.3.4Google Scholar
  19. 19.
    B. Tuttle, Phys.Rev.B 59, 12884 (1999)Google Scholar
  20. 20.
    S. Ganichev, E. Ziemann, W. Prettl, I. Yassievich, A. Istratov, E. Weber, Phys.Rev.B 61, 61 (2000)Google Scholar
  21. 21.
    W. Gös, M. Karner, S. Tyaginov, P. Hehenberger, T. Grasser, in Proc.SISPAD (2008), pp. 69–72Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Thomas Aichinger
    • 1
    Email author
  • Gregor Pobegen
    • 2
  • Michael Nelhiebel
    • 2
  1. 1.Infineon Technologies Austria AGVillachAustria
  2. 2.KAI Kompetenzzentrum für Automobil- und IndustrielektronikVillachAustria

Personalised recommendations