Advertisement

Impact of Hydrogen on the Bias Temperature Instability

  • Gregor Pobegen
  • Thomas Aichinger
  • Michael Nelhiebel
Chapter

Abstract

The ability of hydrogen to saturate lattice imperfections, which arise naturally at the silicon–oxide interface due to the structural mismatch of the two materials, has already early motivated to connect H with the bias temperature instability. Consistently, ESR measurements after NBTS observed P b center defects, i.e. previously H passivated interfacial dangling bonds on silicon atoms at the interface, which supports the assumption that H is detached from defect precursors during NBTS. In contrast, theoretical and experimental investigations on the Si–H bond dissociation energy revealed a rather large value, inconsistent with the low-energy nature of conventional NBTI test. We summarize several explanations to this problem and compare these ideas with studies where the amount of H near the interfacial layer is varied through particular process adjustments.

Keywords

Dissociation Energy Gate Oxide Interface Trap Hydrogen Bridge Negative Bias Temperature Instability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was jointly funded by the Austrian Research Promotion Agency (FFG, Project No. 831163) and the Carinthian Economic Promotion Fund (KWF, contract KWF-1521|22741|34186).

References

  1. 1.
    K.O. Jeppson, C.M. Svensson, Journal of Applied Physics 48, 2004 (1977)CrossRefGoogle Scholar
  2. 2.
    G.L. Holmberg, A.B. Kuper, F.D. Miraldi, Journal of The Electrochemical Society 117, 677 (1970)CrossRefGoogle Scholar
  3. 3.
    K.H. Beckmann, N.J. Harrick, Journal of The Electrochemical Society 118, 614 (1971)CrossRefGoogle Scholar
  4. 4.
    K.L. Brower, Physical Review B 42, 3444 (1990)CrossRefGoogle Scholar
  5. 5.
    A.H. Edwards, Physical Review B 44, 1832 (1991)CrossRefGoogle Scholar
  6. 6.
    J.H. Stathis, Journal of Applied Physics 77, 6205 (1995)CrossRefGoogle Scholar
  7. 7.
    J.H. Stathis, Journal of Applied Physics 78, 5215 (1995)CrossRefGoogle Scholar
  8. 8.
    P. Bunson, M. Di Ventra, S. Pantelides, D. Fleetwood, R. Schrimpf, IEEE Transactions on Nuclear Science 47, 2289 (2000)CrossRefGoogle Scholar
  9. 9.
    A. Stesmans, Physical Review B 61, 8393 (2000)CrossRefGoogle Scholar
  10. 10.
    S.T. Pantelides, L. Tsetseris, S. Rashkeev, X. Zhou, D. Fleetwood, R. Schrimpf, Microelectronics Reliability 47, 903 (2007)CrossRefGoogle Scholar
  11. 11.
    T. Aichinger, M. Nelhiebel, S. Decker, T. Grasser, Applied Physics Letters 96, 133511 (2010)CrossRefGoogle Scholar
  12. 12.
    T. Aichinger, S. Puchner, M. Nelhiebel, T. Grasser, H. Hutter, in IEEE International Reliability Physics Symposium (2010), p. 1063Google Scholar
  13. 13.
    V. Huard, in IEEE International Reliability Physics Symposium (2010), pp. 33–42Google Scholar
  14. 14.
    T. Grasser, T. Aichinger, G. Pobegen, H. Reisinger, P.J. Wagner, J. Franco, M. Nelhiebel, C. Ortolland, B. Kaczer, in IEEE International Reliability Physics Symposium (2011), pp. 605–613Google Scholar
  15. 15.
    G. Pobegen, M. Nelhiebel, T. Grasser, in IEEE International Integrated Reliability Workshop (2012), pp. 54–58Google Scholar
  16. 16.
    T. Grasser, B. Kaczer, W. Goes, T. Aichinger, P. Hehenberger, M. Nelhiebel, in IEEE International Reliability Physics Symposium (2009), pp. 33–44Google Scholar
  17. 17.
    P.J. Wagner, B. Kaczer, A. Scholten, H. Reisinger, S. Bychikhin, D. Pogany, L.K.J. Vandamme, T. Grasser, in IEEE International Integrated Reliability Workshop (2012), pp. 60–64Google Scholar
  18. 18.
    T. Ho, D. Ang, A. Boo, Z. Teo, K. Leong, IEEE Transactions on Electron Devices 59, 1013 (2012)CrossRefGoogle Scholar
  19. 19.
    P.M. Lenahan, P.V. Dressendorfer, Applied Physics Letters 41, 542 (1982)CrossRefGoogle Scholar
  20. 20.
    P.M. Lenahan, P.V. Dressendorfer, Journal of Applied Physics 55, 3495 (1984)CrossRefGoogle Scholar
  21. 21.
    J.R. Ligenza, Journal of Physical Chemistry 65, 2011 (1961)CrossRefGoogle Scholar
  22. 22.
    K. Kushida-Abdelghafar, K. Watanabe, J. Ushio, E. Murakami, Applied Physics Letters 81, 4362 (2002)CrossRefGoogle Scholar
  23. 23.
    A. Stesmans, Physical Review B 48, 2418 (1993)CrossRefGoogle Scholar
  24. 24.
    A. Stesmans, B. Nouwen, V.V. Afanas’ev, Physical Review B 58, 15801 (1998)Google Scholar
  25. 25.
    A. Stesmans, Applied Physics Letters 68, 2723 (1996)CrossRefGoogle Scholar
  26. 26.
    A. Stesmans, Applied Physics Letters 68, 2076 (1996)CrossRefGoogle Scholar
  27. 27.
    K.L. Brower, S.M. Myers, Applied Physics Letters 57, 162 (1990)CrossRefGoogle Scholar
  28. 28.
    K.L. Brower, Physical Review B 38, 9657 (1988)CrossRefGoogle Scholar
  29. 29.
    B. Tuttle, C.G. Van de Walle, Physical Review B 59, 12884 (1999)CrossRefGoogle Scholar
  30. 30.
    L.A. Ragnarsson, P. Lundgren, Journal of Applied Physics 88, 938 (2000)CrossRefGoogle Scholar
  31. 31.
    R.A. Weeks, Journal of Applied Physics 27, 1376 (1956)CrossRefGoogle Scholar
  32. 32.
    R.H. Silsbee, Journal of Applied Physics 32, 1459 (1961)CrossRefGoogle Scholar
  33. 33.
    F.J. Feigl, W. Fowler, K.L. Yip, Solid State Communications 14, 225 (1974)CrossRefGoogle Scholar
  34. 34.
    J. Vitko, Journal of Applied Physics 49, 5530 (1978)CrossRefGoogle Scholar
  35. 35.
    T. Takahashi, B.B. Triplett, K. Yokogawa, T. Sugano, Applied Physics Letters 51, 1334 (1987)CrossRefGoogle Scholar
  36. 36.
    B.B. Triplett, T. Takahashi, T. Sugano, Applied Physics Letters 50, 1663 (1987)CrossRefGoogle Scholar
  37. 37.
    T.E. Tsai, D.L. Griscom, Journal of Non-Crystalline Solids 91, 170 (1987)CrossRefGoogle Scholar
  38. 38.
    J. Conley, P. Lenahan, IEEE Transactions on Nuclear Science 39, 2186 (1992)CrossRefGoogle Scholar
  39. 39.
    P.M. Lenahan, J. J. F. Conley, Journal of Vacuum Science and Technology B 16, 2134 (1998)CrossRefGoogle Scholar
  40. 40.
    V.V. Afanas’ev, A. Stesmans, Applied Physics Letters 71, 3844 (1997)Google Scholar
  41. 41.
    P.E. Bloechl, J.H. Stathis, Physical Review Letters 83, 372 (1999)CrossRefGoogle Scholar
  42. 42.
    Z. Li, S. Fonash, E. Poindexter, M. Harmatz, F. Rong, W. Buchwald, Journal of Non-Crystalline Solids 126, 173 (1990)CrossRefGoogle Scholar
  43. 43.
    J. Conley, J.F., P. Lenahan, IEEE Transactions on Nuclear Science 40, 1335 (1993)Google Scholar
  44. 44.
    V. Afanas’ev, G. Adriaenssens, A. Stesmans, Microelectronic Engineering 59, 85 (2001)Google Scholar
  45. 45.
    P.E. Bloechl, J.H. Stathis, Physica B: Condensed Matter 273–274, 1022 (1999)CrossRefGoogle Scholar
  46. 46.
    Y. Gao, D. Ang, C.D. Young, G. Bersuker, in IEEE International Reliability Physics Symposium (2012), pp. 5A.5.1–5A.5.5Google Scholar
  47. 47.
    A.A. Boo, D.S. Ang, Z.Q. Teo, K.C. Leong, IEEE Electron Device Letters 33, 486 (2012)CrossRefGoogle Scholar
  48. 48.
    F. Schanovsky, W. Goes, T. Grasser, Journal of Vacuum Science and Technology B 29, 01A201 (2011)Google Scholar
  49. 49.
    V.V. Afanas’ev, A. Stesmans, Physical Review Letters 80, 5176 (1998)Google Scholar
  50. 50.
    V.V. Afanas’ev, A. Stesmans, Physical Review B 60, 5506 (1999)Google Scholar
  51. 51.
    V.V. Afanas’ev, A. Stesmans, Europhysics Letters 53, 233 (2001)Google Scholar
  52. 52.
    S. Pantelides, S. Rashkeev, R. Buczko, D. Fleetwood, R. Schrimpf, IEEE Transactions on Nuclear Science 47, 2262 (2000)CrossRefGoogle Scholar
  53. 53.
    J.M. Soon, K.P. Loh, S.S. Tan, T.P. Chen, W.Y. Teo, L. Chan, Applied Physics Letters 83, 3063 (2003)CrossRefGoogle Scholar
  54. 54.
    S. Fujieda, Y. Miura, M. Saitoh, E. Hasegawa, S. Koyama, K. Ando, Applied Physics Letters 82, 3677 (2003)CrossRefGoogle Scholar
  55. 55.
    J. Campbell, P. Lenahan, A. Krishnan, S. Krishnan, IEEE Transactions on Device and Materials Reliability 6, 117 (2006)CrossRefGoogle Scholar
  56. 56.
    C.E. Blat, E.H. Nicollian, E.H. Poindexter, Journal of Applied Physics 69, 1712 (1991)CrossRefGoogle Scholar
  57. 57.
    S.W. Benson, Journal of Chemical Education 42, 502 (1965)CrossRefGoogle Scholar
  58. 58.
    A.E. Douglas, Canadian Journal of Physics 35, 71 (1957)CrossRefGoogle Scholar
  59. 59.
    C. Kaneta, T. Yamasaki, Y. Kosaka, Fujitsu Scientific and Technical Journal 39, 106 (2003)Google Scholar
  60. 60.
    C. Guerin, V. Huard, A. Bravaix, Journal of Applied Physics 105, 114513 (2009)CrossRefGoogle Scholar
  61. 61.
    S. Ogawa, N. Shiono, Physical Review B 51, 4218 (1995)CrossRefGoogle Scholar
  62. 62.
    M.A. Alam, S. Mahapatra, Microelectronics Reliability 45, 71 (2005)CrossRefGoogle Scholar
  63. 63.
    J.W. McPherson, R.B. Khamankar, A. Shanware, Journal of Applied Physics 88, 5351 (2000)CrossRefGoogle Scholar
  64. 64.
    S. Mahapatra, P.B. Kumar, M.A. Alam, IEEE Transactions on Electron Devices 51, 1371 (2004)CrossRefGoogle Scholar
  65. 65.
    S. Mahapatra, A.E. Islam, S. Deora, V.D. Maheta, K. Joshi, A. Jain, M.A. Alam, in IEEE International Reliability Physics Symposium (2011), pp. 614–623Google Scholar
  66. 66.
    F. Schanovsky, T. Grasser, in IEEE Integrated Reliability Workshop (2011), pp. 17–21Google Scholar
  67. 67.
    L. Tsetseris, X.J. Zhou, D.M. Fleetwood, R.D. Schrimpf, S.T. Pantelides, Applied Physics Letters 86, 142103 (2005)CrossRefGoogle Scholar
  68. 68.
    S. Rashkeev, D. Fleetwood, R. Schrimpf, S. Pantelides, Physical Review Letters p. 165506 (2001)Google Scholar
  69. 69.
    M. Houssa, V.V. Afanas’ev, A. Stesmans, M. Aoulaiche, G. Groeseneken, M.M. Heyns, Applied Physics Letters 90, 043505 (2007)Google Scholar
  70. 70.
    A.H. Edwards, Journal of Non-Crystalline Solids 187, 232 (1995)CrossRefGoogle Scholar
  71. 71.
    J.F. Zhang, H.K. Sii, R. Degraeve, G. Groeseneken, Journal of Applied Physics 87, 2967 (2000)CrossRefGoogle Scholar
  72. 72.
    R.E. Stahlbush, A.H. Edwards, D.L. Griscom, B.J. Mrstik, Journal of Applied Physics 73, 658 (1993)CrossRefGoogle Scholar
  73. 73.
    M. Wilde, M. Matsumoto, K. Fukutani, Z. Liu, K. Ando, Y. Kawashima, S. Fujieda, Journal of Applied Physics 92, 4320 (2002)CrossRefGoogle Scholar
  74. 74.
    Z. Liu, S. Fujieda, K. Terashima, M. Wilde, K. Fukutani, Applied Physics Letters 81, 2397 (2002)CrossRefGoogle Scholar
  75. 75.
    T. Aichinger, P. Lenahan, T. Grasser, G. Pobegen, M. Nelhiebel, in IEEE International Reliability Physics Symposium (2012), pp. XT.2.1 – XT.2.6Google Scholar
  76. 76.
    A. Alkauskas, A. Pasquarello, Physica B: Condensed Matter 401–402, 546 (2007)CrossRefGoogle Scholar
  77. 77.
    P. Lenahan, Microelectronic Engineering 69, 173 (2003)CrossRefGoogle Scholar
  78. 78.
    J. Ryan, P. Lenahan, T. Grasser, H. Enichlmair, in IEEE International Reliability Physics Symposium (2010), pp. 43–49Google Scholar
  79. 79.
    J.W. Lee, M. Tomozawa, R. MacCrone, Journal of Non-Crystalline Solids 354, 3510 (2008)CrossRefGoogle Scholar
  80. 80.
    J.P. Campbell, P.M. Lenahan, A.T. Krishnan, S. Krishnan, Applied Physics Letters 87, 204106 (2005)CrossRefGoogle Scholar
  81. 81.
    A. Lelis, J. Boesch, H.E., T. Oldham, F. McLean, IEEE Transactions on Nuclear Science 35, 1186 (1988)Google Scholar
  82. 82.
    A. Lelis, T. Oldham, J. Boesch, H.E., F. McLean, IEEE Transactions on Nuclear Science 36, 1808 (1989)Google Scholar
  83. 83.
    A. Lelis, T. Oldham, IEEE Transactions on Nuclear Science 41, 1835 (1994)CrossRefGoogle Scholar
  84. 84.
    P. Lenahan, Microelectronics Reliability 47, 890 (2007)CrossRefGoogle Scholar
  85. 85.
    A. Stesmans, Journal of Applied Physics 92, 1317 (2002)CrossRefGoogle Scholar
  86. 86.
    J.W. McPherson, V.K. Reddy, H.C. Mogul, Applied Physics Letters 71, 1101 (1997)CrossRefGoogle Scholar
  87. 87.
    V. Huard, C. Parthasarathy, N. Rallet, C. Guerin, M. Mammase, D. Barge, C. Ouvrard, in IEEE International Electron Devices Meeting (2007), pp. 797–800Google Scholar
  88. 88.
    V. Huard, M. Denais, C. Parthasarathy, Microelectronics Reliability 46, 1 (2006)CrossRefGoogle Scholar
  89. 89.
    G. Pobegen, T. Aichinger, M. Nelhiebel, T. Grasser, in IEEE International Electron Device Meeting (2011), pp. 27.3.1–27.3.4Google Scholar
  90. 90.
    T. Grasser, P. Wagner, H. Reisinger, T. Aichinger, G. Pobegen, M. Nelhiebel, B. Kaczer, in IEEE International Electron Devices Meeting (2011), pp. 27.4.1–27.4.4Google Scholar
  91. 91.
    M. Nelhiebel, J. Wissenwasser, T. Detzel, A. Timmerer, E. Bertagnolli, Microelectronics Reliability 45, 1355 (2005)CrossRefGoogle Scholar
  92. 92.
    T. Pompl, K.H. Allers, R. Schwab, K. Hofmann, M. Rochner, in IEEE International Reliability Physics Symposium (2005), pp. 388–397Google Scholar
  93. 93.
    T. Aichinger, On the role of hydrogen in silicon device degradation and metalization processing. Ph.D. thesis, TU Vienna (2010)Google Scholar
  94. 94.
    R. Stradiotto, G. Pobegen, M. Nelhiebel, in IEEE International Integrated Reliability Workshop (2012), pp. 65–69Google Scholar
  95. 95.
    G. Pobegen, M. Nelhiebel, T. Grasser, in IEEE International Reliability Physics Symposium (2013)Google Scholar
  96. 96.
    A.D. Marwick, J.C. Liu, K.P. Rodbell, Journal of Applied Physics 69, 7921 (1991)CrossRefGoogle Scholar
  97. 97.
    D.E. Woon, D.S. Marynick, S.K. Estreicher, Physical Review B 45, 13383 (1992)CrossRefGoogle Scholar
  98. 98.
    S. Puchner, Characterization of contaminations on semiconductor surfaces and thin layer systems with time of flight - secondary ion mass spectrometry. Ph.D. thesis, TU Vienna (2011)Google Scholar
  99. 99.
    T. Aichinger, M. Nelhiebel, IEEE Transactions on Device and Materials Reliability 8, 509 (2008)CrossRefGoogle Scholar
  100. 100.
    G. Groeseneken, H. Maes, N. Beltran, R. De Keersmaecker, IEEE Transactions on Electron Devices 31, 42 (1984)CrossRefGoogle Scholar
  101. 101.
    J.T. Ryan, L.C. Yu, J.H. Han, J.J. Kopanski, K.P. Cheung, F. Zhang, C. Wang, J.P. Campbell, J.S. Suehle, V. Tilak, J. Fronheiser, in IEEE International Reliability Physics Symposium (2011)Google Scholar
  102. 102.
    R. Sun, J. Clemens, J. Nelson, in IEEE International Reliability Physics Symposium (1980), pp. 244–251Google Scholar
  103. 103.
    G. Dunn, IEEE Electron Device Letters 10, 333 (1989)CrossRefGoogle Scholar
  104. 104.
    R.A.B. Devine, J.L. Autran, W.L. Warren, K.L. Vanheusdan, J.C. Rostaing, Applied Physics Letters 70, 2999 (1997)CrossRefGoogle Scholar
  105. 105.
    I. Kizilyalli, J. Lyding, K. Hess, IEEE Electron Device Letters 18, 81 (1997)CrossRefGoogle Scholar
  106. 106.
    K. Hess, L. Register, B. Tuttle, J. Lyding, I. Kizilyalli, Physica E: Low-dimensional Systems and Nanostructures 3, 1 (1998)CrossRefGoogle Scholar
  107. 107.
    E. Li, E. Rosenbaum, J. Tao, G.C.F. Yeap, M. Lin, P. Fang, in IEEE International Reliability Physics Symposium (1999), pp. 253–258Google Scholar
  108. 108.
    J.W. Lyding, K. Hess, I.C. Kizilyalli, Applied Physics Letters 68, 2526 (1996)CrossRefGoogle Scholar
  109. 109.
    N. Kimizuka, K. Yamaguchi, K. Imai, T. Iizuka, C.T. Liu, R. Keller, T. Horiuchi, in Symposium on VLSI Technology (2000), pp. 92–93Google Scholar
  110. 110.
    C. Liu, M. Lee, C.Y. Lin, J. Chen, K. Schruefer, J. Brighten, N. Rovedo, T. Hook, M. Khare, S.F. Huang, C. Wann, T. chiang Chen, T. Ning, in International Electron Devices Meeting (2001), pp. 39.2.1–39.2.4Google Scholar
  111. 111.
    V. Huard, F. Monsieur, G. Ribes, S. Bruyere, in IEEE International Reliability Physics Symposium (2003), pp. 178 –182Google Scholar
  112. 112.
    S. Fujieda, Y. Miura, M. Saitoh, Y. Teraoka, A. Yoshigoe, Microelectronics Reliability 45, 57 (2005)CrossRefGoogle Scholar
  113. 113.
    Y. Mitani, H. Satake, in IEEE International Conference on Integrated Circuit Design and Technology (2006), pp. 1–4Google Scholar
  114. 114.
    J. Wu, E. Rosenbaum, B. MacDonald, E. Li, J. Tao, B. Tracy, P. Fang, in IEEE International Reliability Physics Symposium (2000), pp. 27–32Google Scholar
  115. 115.
    T.B. Hook, R. Bolam, W. Clark, J. Burnham, N. Rovedo, L. Schutz, Microelectronics Reliability 45, 47 (2005)CrossRefGoogle Scholar
  116. 116.
    J.S. Lee, Transactions on Electrical and Electronic Materials 13, 188 (2012)CrossRefGoogle Scholar
  117. 117.
    C.G.V. de Walle, W.B. Jackson, Applied Physics Letters 69, 2441 (1996)CrossRefGoogle Scholar
  118. 118.
    R. Biswas, Y.P. Li, B.C. Pan, Applied Physics Letters 72, 3500 (1998)CrossRefGoogle Scholar
  119. 119.
    S. Zafar, B. Lee, J. Stathis, A. Callegari, T. Ning, in Symposium on VLSI Technology (2004), pp. 208–209Google Scholar
  120. 120.
    K. Cheng, K. Hess, J. Lyding, IEEE Electron Device Letters 22, 441 (2001)CrossRefGoogle Scholar
  121. 121.
    K. Cheng, K. Hess, J.W. Lyding, Journal of Applied Physics 90, 6536 (2001)CrossRefGoogle Scholar
  122. 122.
    T. Aichinger, M. Nelhiebel, S. Einspieler, T. Grasser, Journal of Applied Physics 107, 024508 (2010)CrossRefGoogle Scholar
  123. 123.
    P.V. Gray, D.M. Brown, Applied Physics Letters 8, 31 (1966)CrossRefGoogle Scholar
  124. 124.
    T. Aichinger, G. Pobegen, M. Nelhiebel, Application of on-chip device heating for BTI investigations (Springer Verlag, 2013), Chap.  2
  125. 125.
    T. Aichinger, M. Nelhiebel, S. Einspieler, T. Grasser, IEEE Transactions on Device and Materials Reliability 10, 3 (2010)CrossRefGoogle Scholar
  126. 126.
    G. Pobegen, T. Aichinger, T. Grasser, M. Nelhiebel, Microelectronics Reliability 51, 1530 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Gregor Pobegen
    • 1
  • Thomas Aichinger
    • 2
  • Michael Nelhiebel
    • 1
  1. 1.KAI Kompetenzzentrum für Automobil- und IndustrielektronikVillachAustria
  2. 2.Infineon Technologies Austria AGVillachAustria

Personalised recommendations