Advertisement

Mutant Resources for Functional Analysis of the Rice Genome

  • Gaëtan Droc
  • Gynheung An
  • Changyin Wu
  • Yue-ie C. Hsing
  • Hirohiko Hirochika
  • Andy Pereira
  • Venkatesan Sundaresan
  • Chang-Deok Han
  • Narayana Upadhyaya
  • Srinivasan Ramachandran
  • Luca Comai
  • Hei Leung
  • Emmanuel Guiderdoni
Chapter
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 5)

Abstract

In the past 15 years a large international effort of generation of mutant collections has been accomplished in rice, the model plant for cereals and grasses. Physical and chemical mutagenesis as well as insertion mutagenesis using Agrobacterium T-DNA, endogenous Tos17 retro-element, and maize transposon systems have been used to create lesions in the 39,000 non-transposable genes annotated in the rice genome. Nowadays, 72 % of the rice genes have at least one sequence-indexed insert while 22 % have three, allelic, sequence-indexed inserts. Despite their yet incomplete coverage, these resources have already been instrumental in unraveling the function of numerous genes underlying important developmental and physiological traits through forward or reverse genetics strategies. Together with sequence-specific inactivation approaches (RNA interference and nuclease-based gene editing), mutant collections will contribute to the elucidation of the function of all agronomically important genes in rice by year 2020, an objective shared by the rice community.

Notes

Acknowledgements

The authors thank the French National Genomics Initiative Génoplante, the Agence Nationale de la Recherche (grant ANR08-GENM-021) in France, the European Commission, the Next-Generation BioGreen 21 Program (PJ008215 and PJ008168), Rural Development Administration, the twenty-first century Frontier Program (CG1111) and the Biogreen 21 program, Republic of Korea, Academia Sinica, the National Science Council and the Council of Agriculture of the Republic of China and the Ministry of Science and Technology of China.

References

  1. 1.
    Abbruscato P, Nepusz T, Mizzi L, Del Corvo M, Morandini P, Fumasoni I, Michel C, Paccanaro A, Guiderdoni E, Schaffrath U, Morel J-B, Piffanelli P, Faivre-Rampant O (2012) OsWRKY22, a monocot WRKY gene, plays a role in the resistance response to blast. Mol Plant Pathol 13:828–841PubMedCrossRefGoogle Scholar
  2. 2.
    Agrawal G, Abe K, Yamazaki M, Miyao A, Hirochika H (2005) Conservation of the E-function for floral organ identity in rice revealed by the analysis of tissue culture-induced loss-of-function mutants of the OsMADS1 gene. Plant Mol Biol 59:125–135PubMedCrossRefGoogle Scholar
  3. 3.
    Agrawal GK, Yamazaki M, Kobayashi M, Hirochika R, Miyao A, Hirochika H (2001) Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion. Tagging of a zeaxanthin epoxidase gene and a novel OsTATC gene. Plant Physiol 125:1248–1257PubMedCrossRefGoogle Scholar
  4. 4.
    An SY, Park S, Jeong DH, Lee DY, Kang HG, Yu JH, Hur J, Kim SR, Kim YH, Lee M, Han SK, Kim SJ, Yang JW, Kim E, Wi SJ, Chung HS, Hong JP, Choe V, Lee HK, Choi JH, Nam JM, Kim SR, Park PB, Park KY, Kim WT, Choe S, Lee CB, An GH (2003) Generation and analysis of end sequence database for T-DNA tagging lines in rice. Plant Physiol 133:2040–2047PubMedCrossRefGoogle Scholar
  5. 5.
    Anukul N, Ramos R, Mehrshahi P, Castelazo A, Parker H, Diévart A, Lanau N, Mieulet D, Tucker G, Guiderdoni E, Barrett D, Bennett M (2010) Folate polyglutamylation is required for rice seed development. Rice 3:181–193CrossRefGoogle Scholar
  6. 6.
    Bolot S, Abrouk M, Masood-Quraishi U, Stein N, Messing J, Feuillet C, Salse J (2009) The “inner circle” of the cereal genomes. Curr Opin Plant Biol 12:119–125PubMedCrossRefGoogle Scholar
  7. 7.
    Bougourd S, Marrison J, Haseloff J (2000) An aniline blue staining procedure for confocal microscopy and 3D imaging of normal and perturbed cellular phenotypes in mature Arabidopsis embryos. Plant J 24:543–550PubMedCrossRefGoogle Scholar
  8. 8.
    Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415PubMedGoogle Scholar
  9. 9.
    Bruce M, Hess A, Bai J, Mauleon R, Diaz MG, Sugiyama N, Bordeos A, Wang G-L, Leung H, Leach J (2009) Detection of genomic deletions in rice using oligonucleotide microarrays. BMC Genomics 10:129PubMedCrossRefGoogle Scholar
  10. 10.
    Chang Y, Gong L, Yuan W, Li X, Chen G, Li X, Zhang Q, Wu C (2009) Replication protein A (RPA1a) is required for meiotic and somatic DNA repair but is dispensable for DNA replication and homologous recombination in rice. Plant Physiol 151:2162–2173PubMedCrossRefGoogle Scholar
  11. 11.
    Chen C, Fan C, Gao M, Zhu H (2009) Antiquity and function of CASTOR and POLLUX, the twin ion channel-encoding genes key to the evolution of root symbioses in plants. Plant Physiol 149:306–317PubMedCrossRefGoogle Scholar
  12. 12.
    Chen S, Jin W, Wang M, Zhang F, Zhou J, Jia Q, Wu Y, Liu F, Wu P (2003) Distribution and characterization of over 1000 T-DNA tags in rice genome. Plant J 36:105–113PubMedCrossRefGoogle Scholar
  13. 13.
    Cheng Z, Buell CR, Wing RA, Gu M, Jiang J (2001) Toward a cytological characterization of the rice genome. Genome Res 11:2133–2141PubMedCrossRefGoogle Scholar
  14. 14.
    Chern C-G, Fan M-J, Yu S-M, Hour A-L, Lu P-C, Lin Y-C, Wei F-J, Huang S-C, Chen S, Lai M-H, Tseng C-S, Yen H-M, Jwo W-S, Wu C-C, Yang T-L, Li L-S, Kuo Y-C, Li S-M, Li C-P, Wey C-K, Trisiriroj A, Lee H-F, Hsing Y-I (2007) A rice phenomics study—phenotype scoring and seed propagation of a T-DNA insertion-induced rice mutant population. Plant Mol Biol 65:427–438PubMedCrossRefGoogle Scholar
  15. 15.
    Chin HG, Choe MS, Lee S-H, Park SH, Park SH, Koo JC, Kim NY, Lee JJ, Oh BG, Yi GH, Kim SC, Choi HC, Cho MJ, Han C-D (1999) Molecular analysis of rice plants harboring an Ac/Ds transposable element-mediated gene trapping system. Plant J 19:615–623PubMedCrossRefGoogle Scholar
  16. 16.
    Comai L, Henikoff S (2006) TILLING: practical single-nucleotide mutation discovery. Plant J 45:684–694PubMedCrossRefGoogle Scholar
  17. 17.
    Dai X, You C, Chen G, Li X, Zhang Q, Wu C (2011) OsBC1L4 encodes a COBRA-like protein that affects cellulose synthesis in rice. Plant Mol Biol 75:333–345PubMedCrossRefGoogle Scholar
  18. 18.
    Delteil A, Blein M, Faivre-Rampant O, Guellim A, Estevan J, Hirsch J, Bevitori R, Michel C, Morel J-B (2011) Building a mutant resource for the study of disease resistance in rice reveals the pivotal role of several genes involved in defence. Mol Plant Pathol 13:72–82PubMedCrossRefGoogle Scholar
  19. 19.
    Diaz G, Ryba M, Nelson R, Leung H, Leach J (2007) Detection of deletion mutants in rice via overgo hybridization onto membrane spotted arrays. Plant Mol Biol Rep 25:17–26CrossRefGoogle Scholar
  20. 20.
    Droc G, Ruiz M, Larmande P, Pereira A, Piffanelli P, Morel JB, Dievart A, Courtois B, Guiderdoni E, Perin C (2006) OryGenesDB: a database for rice reverse genetics. Nucleic Acids Res 34:736–740CrossRefGoogle Scholar
  21. 21.
    Du H, Liu L, You L, Yang M, He Y, Li X, Xiong L (2011) Characterization of an inositol 1,3,4-trisphosphate 5/6-kinase gene that is essential for drought and salt stress responses in rice. Plant Mol Biol 77:547–563PubMedCrossRefGoogle Scholar
  22. 22.
    Du H, Wang N, Cui F, Li X, Xiao J, Xiong L (2010) Characterization of the beta-carotene hydroxylase gene DSM2 conferring drought and oxidative stress resistance by increasing xanthophylls and abscisic acid synthesis in rice. Plant Physiol 154:1304–1318PubMedCrossRefGoogle Scholar
  23. 23.
    Eamens AL, Blanchard CL, Dennis ES, Upadhyaya NM (2004) A bidirectional gene trap construct suitable for T-DNA and Ds-mediated insertional mutagenesis in rice (Oryza sativa L.). Plant Biotechnol J 2:367–380PubMedCrossRefGoogle Scholar
  24. 24.
    Enoki H, Izawa T, Kawahara M, Komatsu M, Koh S, Kyozuka J, Shimamoto K (1999) Ac as a tool for the functional genomics of rice. Plant J 19:605–613PubMedCrossRefGoogle Scholar
  25. 25.
    Fu F-F, Xue H-W (2010) Coexpression analysis identifies rice starch regulator1, a rice AP2/EREBP family transcription factor, as a novel rice starch biosynthesis regulator. Plant Physiol 154:927–938PubMedCrossRefGoogle Scholar
  26. 26.
    Fu F-F, Ye R, Xu S-P, Xue H-W (2009) Studies on rice seed quality through analysis of a large-scale T-DNA insertion population. Cell Res 19:380–391PubMedCrossRefGoogle Scholar
  27. 27.
    Fujino K, Sekiguchi H (2011) Transposition behavior of nonautonomous a hAT superfamily transposon nDart in rice (Oryza sativa L.). Mol Genet Genomics 286:135–142PubMedCrossRefGoogle Scholar
  28. 28.
    Fujino K, Sekiguchi H, Kiguchi T (2005) Identification of an active transposon in intact rice plants. Mol Genet Genomics 273:150–157PubMedCrossRefGoogle Scholar
  29. 29.
    Fujita N, Toyosawa Y, Utsumi Y, Higuchi T, Hanashiro I, Ikegami A, Akuzawa S, Yoshida M, Mori A, Inomata K, Itoh R, Miyao A, Hirochika H, Satoh H, Nakamura Y (2009) Characterization of pullulanase (PUL)-deficient mutants of rice (Oryza sativa L.) and the function of PUL on starch biosynthesis in the developing rice endosperm. J Exp Bot 60:1009–1023PubMedCrossRefGoogle Scholar
  30. 30.
    Fujita N, Yoshida M, Asakura N, Ohdan T, Miyao A, Hirochika H, Nakamura Y (2006) Function and characterization of starch synthase I using mutants in rice. Plant Physiol 140:1070–1084PubMedCrossRefGoogle Scholar
  31. 31.
    Fujita N, Yoshida M, Kondo T, Saito K, Utsumi Y, Tokunaga T, Nishi A, Satoh H, Park J-H, Jane J-L, Miyao A, Hirochika H, Nakamura Y (2007) Characterization of SSIIIa-deficient mutants of rice: the function of SSIIIa and pleiotropic effects by SSIIIa deficiency in the rice endosperm. Plant Physiol 144:2009–2023PubMedCrossRefGoogle Scholar
  32. 32.
    Goh C-H, Jang S, Jung S, Kim H-S, Kang H-G, Park Y-I, Bae H-J, Lee C-H, An G (2009) Rice phot1 mutation reduces plant growth by affecting photosynthetic responses to light during early seedling growth. Plant Mol Biol 69:605–619PubMedCrossRefGoogle Scholar
  33. 33.
    Greco R, Ouwerkerk PBF, de Kam RJ, Sallaud C, Favalli C, Colombo L, Guiderdoni E, Meijer AH, Hoge JHC, Pereira A (2003) Transpositional behaviour of an Ac/Ds system for reverse genetics in rice. Theor Appl Genet 108:10–24PubMedCrossRefGoogle Scholar
  34. 34.
    Guiderdoni E, An G, Yu SM, Hsing YL, Wu C (2007) T-DNA insertion mutants as a resource for rice functional genomics. In: Upadhyaya NM (ed) Rice functional genomics—challenges, progress and prospects. Springer, New York, pp 187–227Google Scholar
  35. 35.
    Han M-J, Jung K-H, Yi G, An G (2011) Rice importin β1 gene affects pollen tube elongation. Mol Cells 31:523–530PubMedCrossRefGoogle Scholar
  36. 36.
    Han M-J, Jung K-H, Yi G, Lee D-Y, An G (2006) Rice immature pollen 1 (RIP1) is a regulator of late pollen development. Plant Cell Physiol 47:1457–1472PubMedCrossRefGoogle Scholar
  37. 37.
    Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282PubMedCrossRefGoogle Scholar
  38. 38.
    Hirochika H (2001) Contribution of the Tos17 retrotransposon to rice functional genomics. Curr Opin Plant Biol 4:118–122PubMedCrossRefGoogle Scholar
  39. 39.
    Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M (1996) Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci U S A 93:7783–7788PubMedCrossRefGoogle Scholar
  40. 40.
    Hong J-P, Byun MY, An K, Yang S-J, An G, Kim WT (2010) OsKu70 is associated with developmental growth and genome stability in rice. Plant Physiol 152:374–387PubMedCrossRefGoogle Scholar
  41. 41.
    Hong J-P, Byun MY, Koo D-H, An K, Bang J-W, Chung IK, An G, Kim WT (2007) Suppression of RICE TELOMERE BINDING PROTEIN1 results in severe and gradual developmental defects accompanied by genome instability in rice. Plant Cell 19:1770–1781PubMedCrossRefGoogle Scholar
  42. 42.
    Hossain MA, Cho J-I, Han M, Ahn C-H, Jeon J-S, An G, Park PB (2010) The ABRE-binding bZIP transcription factor OsABF2 is a positive regulator of abiotic stress and ABA signaling in rice. J Plant Physiol 167:1512–1520PubMedCrossRefGoogle Scholar
  43. 43.
    Hsing Y-I, Chern C-G, Fan M-J, Lu P-C, Chen K-T, Lo S-F, Ho S-L, Lee K-W, Wang Y-C, Sun P-K, Ko R, Huang W-L, Chen J-L, Chung C-I, Lin Y-C, Hour A-L, Wang Y-W, Chang Y-C, Tsai M-W, Lin Y-S, Chen Y-C, Chen S, Yen H-M, Li C-P, Wey C-K, Tseng C-S, Lai M-H, Chen L-J, Yu S-M (2006) A rice gene activation/knockout mutant population for high throughput functional genomics analysis. Plant Mol Biol 63:351–364PubMedCrossRefGoogle Scholar
  44. 44.
    Hsing YI, Chern CG, Fan MJ, Lu PC, Chen KT, Lo SF, Sun PK, Ho SL, Lee KW, Wang YC, Huang WL, Ko SS, Chen S, Chen JL, Chung CI, Lin YC, Hour AL, Wang YW, Chang YC, Tsai MW, Lin YS, Chen YC, Yen HM, Li CP, Wey CK, Tseng CS, Lai MH, Huang SC, Chen LJ, Yu SM (2007) A rice gene activation/knockout mutant resource for high throughput functional genomics. Plant Mol Biol 63:351–364PubMedCrossRefGoogle Scholar
  45. 45.
    Iida S, Terada R (2005) Modification of endogenous natural genes by gene targeting in rice and other higher plants. Plant Mol Biol 59:205–219PubMedCrossRefGoogle Scholar
  46. 46.
    Izawa T, Miyazaki C, Yamamoto M, Terada R, Iida S, Shimamoto K (1991) Introduction and transposition of the maize transposable element Ac in rice (Oryza sativa L.). Mol Gen Genet 227:391–396PubMedCrossRefGoogle Scholar
  47. 47.
    Je BI, Piao HL, Park SJ, Park SH, Kim CM, Xuan YH, Park SH, Huang J, Do Choi Y, An G, Wong HL, Fujioka S, Kim M-C, Shimamoto K, Han C-D (2010) RAV-like1 maintains brassinosteroid homeostasis via the coordinated activation of BRI1 and biosynthetic genes in rice. Plant Cell 22:1777–1791PubMedCrossRefGoogle Scholar
  48. 48.
    Jeon JS, Lee S, Jung KH, Jun SH, Jeong DH, Lee J, Kim C, Jang S, Lee S, Yang K, Nam J, An K, Han MJ, Sung RJ, Choi HS, Yu JH, Choi JH, Cho SY, Cha SS, Kim SI, An G (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J 22:561–570PubMedCrossRefGoogle Scholar
  49. 49.
    Jeong DH, An S, Park S, Kang HG, Park GG, Kim SR, Sim J, Kim YO, Kim MK, Kim SR (2006) Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice. Plant J 45:123–132PubMedCrossRefGoogle Scholar
  50. 50.
    Jeong DH, An SY, Kang HG, Moon S, Han JJ, Park S, Lee HS, An KS, An GH (2002) T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiol 130:1636–1644PubMedCrossRefGoogle Scholar
  51. 51.
    Ji H, Kim S-R, Kim Y-H, Kim H, Eun M-Y, Jin I-D, Cha Y-S, Yun D-W, Ahn B-O, Lee MC, Lee G-S, Yoon U-H, Lee J-S, Lee Y-H, Suh S-C, Jiang W, Yang J-I, Jin P, McCouch SR, An G, Koh H-J (2010) Inactivation of the CTD phosphatase-like gene OsCPL1 enhances the development of the abscission layer and seed shattering in rice. Plant J 61:96–106PubMedCrossRefGoogle Scholar
  52. 52.
    Jiang C, Mithani A, Gan X, Belfield EJ, Klingler John P, Zhu J-K, Ragoussis J, Mott R, Harberd Nicholas P (2011) Regenerant Arabidopsis lineages display a distinct genome-wide spectrum of mutations conferring variant phenotypes. Curr Biol 21:1385–1390PubMedCrossRefGoogle Scholar
  53. 53.
    Jiang N, Bao Z, Zhang X, Hirochika H, Eddy SR, McCouch SR, Wessler SR (2003) An active DNA transposon family in rice. Nature 421:163–167PubMedCrossRefGoogle Scholar
  54. 54.
    Jiang S-Y, Bachmann D, La H, Ma Z, Venkatesh P, Ramamoorthy R, Ramachandran S (2007) Ds insertion mutagenesis as an efficient tool to produce diverse variations for rice breeding. Plant Mol Biol 65:385–402PubMedCrossRefGoogle Scholar
  55. 55.
    Jiang SY, Cai M, Ramachandran S (2005) The Oryza sativa no pollen (Osnop) gene plays a role in male gametophyte development and most likely encodes a C2-GRAM domain-containing protein. Plant Mol Biol 57:835–853PubMedCrossRefGoogle Scholar
  56. 56.
    Jiang Y, Bao L, Jeong S-Y, Kim S-K, Xu C, Li X, Zhang Q (2012) XIAO is involved in the control of organ size by contributing to the regulation of signaling and homeostasis of brassinosteroids and cell cycling in rice. Plant J 70:398–408PubMedCrossRefGoogle Scholar
  57. 57.
    Jiang Y, Cai Z, Xie W, Long T, Yu H, Zhang Q (2011) Rice functional genomics research: progress and implications for crop genetic improvement. Biotechnol Adv 30:1059–1070PubMedCrossRefGoogle Scholar
  58. 58.
    Johnson AAT, Hibberd JM, Gay C, Essah PA, Haseloff J, Tester M, Guiderdoni E (2005) Spatial control of transgene expression in rice (Oryza sativa L.) using the GAL4 enhancer trapping system. Plant J 41:779–789PubMedCrossRefGoogle Scholar
  59. 59.
    Jung K-H, Han M-J, Lee Y-S, Kim Y-W, Hwang I, Kim M-J, Kim Y-K, Nahm BH, An G (2005) Rice undeveloped Tapetum1 is a major regulator of early tapetum development. Plant Cell 17:2705–2722PubMedCrossRefGoogle Scholar
  60. 60.
    Jung KH, Hur J, Ryu CH, Choi Y, Chung YY, Miyao A, Hirochika H, An GH (2003) Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol 44:463–472PubMedCrossRefGoogle Scholar
  61. 61.
    Kaneko M, Inukai Y, Ueguchi-Tanaka M, Itoh H, Izawa T, Kobayashi Y, Hattori T, Miyao A, Hirochika H, Ashikari M, Matsuoka M (2004) Loss-of-function mutations of the rice GAMYB gene impair alpha-amylase expression in aleurone and flower development. Plant Cell 16:33–44PubMedCrossRefGoogle Scholar
  62. 62.
    Kiegle E, Moore CA, Haseloff J, Tester MA, Knight MR (2000) Cell-type-specific calcium responses to drought, salt and cold in the Arabidopsis root. Plant J 23:267–278PubMedCrossRefGoogle Scholar
  63. 63.
    Kikuchi K, Terauchi K, Wada M, Hirano H-Y (2003) The plant MITE mPing is mobilized in anther culture. Nature 421:167–170PubMedCrossRefGoogle Scholar
  64. 64.
    Kim CM, Park SH, Je BI, Park SH, Park SJ, Piao HL, Eun MY, Dolan L, Han C-D (2007) OsCSLD1, a cellulose synthase-like D1 gene, is required for root hair morphogenesis in rice. Plant Physiol 143:1220–1230PubMedCrossRefGoogle Scholar
  65. 65.
    Kim S-R, Yang J-I, Moon S, Ryu C-H, An K, Kim K-M, Yim J, An G (2009) Rice OGR1 encodes a pentatricopeptide repeat–DYW protein and is essential for RNA editing in mitochondria. Plant J 59:738–749PubMedCrossRefGoogle Scholar
  66. 66.
    Koh S, Lee S-C, Kim M-K, Koh J, Lee S, An G, Choe S, Kim S-R (2007) T-DNA tagged knockout mutation of rice OsGSK1, an orthologue of Arabidopsis BIN2, with enhanced tolerance to various abiotic stresses. Plant Mol Biol 65:453–466PubMedCrossRefGoogle Scholar
  67. 67.
    Kohli AK, Xiong JX, Greco RG, Christou PC, Pereira AP (2001) Tagged transcriptome display (TTD) in indica rice using Ac transposition. Mol Genet Genomics 266:1–11PubMedCrossRefGoogle Scholar
  68. 68.
    Kolesnik T, Szeverenyi I, Bachmann D, Kumar CS, Jiang S, Ramamoorthy R, Cai M, Ma ZG, Sundaresan V, Ramachandran S (2004) Establishing an efficient Ac/Ds tagging system in rice: large-scale analysis of Ds flanking sequences. Plant J 37:301–314PubMedCrossRefGoogle Scholar
  69. 69.
    Krishnan A, Guiderdoni E, An G, Hsing Y-I, Han C-D, Lee MC, Yu S-M, Upadhyaya N, Ramachandran S, Zhang Q, Sundaresan V, Hirochika H, Leung H, Pereira A (2009) Mutant resources in rice for functional genomics of the grasses. Plant Physiol 149:165–170PubMedCrossRefGoogle Scholar
  70. 70.
    Krysan PJ, Young JC, Sussman MR (1999) T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 11:2283–2290PubMedGoogle Scholar
  71. 71.
    Kumar CS, Wing RA, Sundaresan V (2005) Efficient insertional mutagenesis in rice using the maize En/Spm elements. Plant J 44:879–892PubMedCrossRefGoogle Scholar
  72. 72.
    Kurusu T, Yagala T, Miyao A, Hirochika H, Kuchitsu K (2005) Identification of a putative voltage-gated Ca2+ channel as a key regulator of elicitor-induced hypersensitive cell death and mitogen-activated protein kinase activation in rice. Plant J 42:798–809PubMedCrossRefGoogle Scholar
  73. 73.
    Larmande P, Gay C, Lorieux M, Perin C, Bouniol M, Droc G, Sallaud C, Perez P, Barnola I, Biderre-Petit C, Martin J, Morel JB, Johnson AAT, Bourgis F, Ghesquiere A, Ruiz M, Courtois B, Guiderdoni E (2008) Oryza tag line, a phenotypic mutant database for the genoplante rice insertion line library. Nucleic Acids Res 36:D1022–D1027PubMedCrossRefGoogle Scholar
  74. 74.
    Lee GS, Park SH, Yun DW, Ahn BO, Kim CK, Han CD, Yi GH, Park DS, Eun MY, Yoon UH (2010) Current status of Ac/Ds mediated gene tagging systems for study of rice functional genomics in Korea. J Plant Biotechnol 371:125–132Google Scholar
  75. 75.
    Lee J, Park J-J, Kim S, Yim J, An G (2007) Mutations in the rice liguleless gene result in a complete loss of the auricle, ligule, and laminar joint. Plant Mol Biol 65:487–499PubMedCrossRefGoogle Scholar
  76. 76.
    Lee S, Jeong H, Kim S, Lee J, Guerinot M, An G (2010) OsZIP5 is a plasma membrane zinc transporter in rice. Plant Mol Biol 73:507–517PubMedCrossRefGoogle Scholar
  77. 77.
    Lee S, Jung K-H, An G, Chung Y-Y (2004) Isolation and characterization of a rice cysteine protease gene, OsCP1, using T-DNA gene-trap system. Plant Mol Biol 54:755–765PubMedCrossRefGoogle Scholar
  78. 78.
    Lee S, Kim J-H, Yoo ES, Lee C-H, Hirochika H, An G (2005) Differential regulation of chlorophyll a oxygenase genes in rice. Plant Mol Biol 57:805–818PubMedCrossRefGoogle Scholar
  79. 79.
    Lee S, Kim J, Son J-S, Nam J, Jeong D-H, Lee K, Jang S, Yoo J, Lee J, Lee D-Y, Kang H-G, An G (2003) Systematic reverse genetic screening of T-DNA tagged genes in rice for functional genomic analyses: MADS-box genes as a test case. Plant Cell Physiol 44:1403–1411PubMedCrossRefGoogle Scholar
  80. 80.
    Lee S, Kim S, Lee J, Guerinot M, An G (2010) Zinc deficiency-inducible OsZIP8 encodes a plasma membrane-localized zinc transporter in rice. Mol Cells 29:551–558PubMedCrossRefGoogle Scholar
  81. 81.
    Lee S, Kim Y-Y, Lee Y, An G (2007) Rice P1B-type heavy-metal ATPase, OsHMA9, is a metal efflux protein. Plant Physiol 145:831–842PubMedCrossRefGoogle Scholar
  82. 82.
    Lee SC, Kim JY, Kim SH, Kim SJ, Lee K, Han SK, Choi HS, Jeong DH, An GH, Kim SR (2004) Trapping and characterization of cold-responsive genes from T-DNA tagging lines in rice. Plant Sci 166:69–79CrossRefGoogle Scholar
  83. 83.
    Lee Y-S, Jeong D-H, Lee D-Y, Yi J, Ryu C-H, Kim SL, Jeong HJ, Choi SC, Jin P, Yang J, Cho L-H, Choi H, An G (2010) OsCOL4 is a constitutive flowering repressor upstream of Ehd1 and downstream of OsphyB. Plant J 63:18–30PubMedGoogle Scholar
  84. 84.
    Li A, Zhang Y, Wu X, Tang W, Wu R, Dai Z, Liu G, Zhang H, Wu C, Chen G, Pan X (2008) DH1, a LOB domain-like protein required for glume formation in rice. Plant Mol Biol 66:491–502PubMedCrossRefGoogle Scholar
  85. 85.
    Li C, Wang Y, Liu L, Hu Y, Zhang F, Mergen S, Wang G, Schläppi MR, Chu C (2011) A rice plastidial nucleotide sugar epimerase is involved in galactolipid biosynthesis and improves photosynthetic efficiency. PLoS Genet 7:e1002196PubMedCrossRefGoogle Scholar
  86. 86.
    Li J, Jiang D, Zhou H, Li F, Yang J, Hong L, Fu X, Li Z, Liu Z, Li J, Zhuang C (2011) Expression of RNA-interference/antisense transgenes by the cognate promoters of target genes is a better gene-silencing strategy to study gene functions in rice. PLoS One 6:e17444PubMedCrossRefGoogle Scholar
  87. 87.
    Li J, Zhu S, Song X, Shen Y, Chen H, Yu J, Yi K, Liu Y, Karplus VJ, Wu P, Deng XW (2006) A rice glutamate receptor–like gene is critical for the division and survival of individual cells in the root apical meristem. Plant Cell 18:340–349PubMedCrossRefGoogle Scholar
  88. 88.
    Li X, Gao X, Wei Y, Deng L, Ouyang Y, Chen G, Li X, Zhang Q, Wu C (2011) Rice APOPTOSIS INHIBITOR5 coupled with Two DEAD-Box adenosine 5′-triphosphate-dependent RNA helicases regulates tapetum degeneration. Plant Cell 23:1416–1434PubMedCrossRefGoogle Scholar
  89. 89.
    Li X, Song Y, Century K, Straight S, Ronald P, Dong X, Lassner M, Zhang Y (2001) A fast neutron deletion mutagenesis-based reverse genetics system for plants. Plant J 27:235–242PubMedCrossRefGoogle Scholar
  90. 90.
    Li X, Yang Y, Yao J, Chen G, Li X, Zhang Q, Wu C (2009) FLEXIBLE CULM 1 encoding a cinnamyl-alcohol dehydrogenase controls culm mechanical strength in rice. Plant Mol Biol 69:685–697PubMedCrossRefGoogle Scholar
  91. 91.
    Liang D, Wu C, Li C, Xu C, Zhang J, Kilian A, Li X, Zhang Q, Xiong L (2006) Establishment of a patterned GAL4/VP16 transactivation system for discovering gene function in rice. Plant J 46:1059–1072PubMedCrossRefGoogle Scholar
  92. 92.
    Lo S-F, Yang S-Y, Chen K-T, Hsing Y-I, Zeevaart JAD, Chen L-J, Yu S-M (2008) A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. Plant Cell 20:2603–2618PubMedCrossRefGoogle Scholar
  93. 93.
    Lorieux M, Blein M, Lozano J, Bouniol M, Droc G, Diévart A, Périn C, Mieulet D, Lanau N, Bès M, Rouvière C, Gay C, Piffanelli P, Larmande P, Michel C, Barnola I, Biderre-Petit C, Sallaud C, Perez P, Bourgis F, Ghesquière A, Gantet P, Tohme J, Morel JB, Guiderdoni E (2012) In-depth molecular and phenotypic characterization in a rice insertion line library facilitates gene identification through reverse and forward genetics approaches. Plant Biotechnol J 10:555–568PubMedCrossRefGoogle Scholar
  94. 94.
    Luo M, Platten D, Chaudhury A, Peacock WJ, Dennis ES (2009) Expression, imprinting, and evolution of rice homologs of the polycomb group genes. Mol Plant 2:711–723PubMedCrossRefGoogle Scholar
  95. 95.
    Manosalva P, Ryba-White M, Wu C, Lei C, Baraoidan M, Leung H, Leach JE (2003) A PCR-based screening strategy for detecting deletions in defense response genes in rice. Phytopathology 93:S57Google Scholar
  96. 96.
    Margis-Pinheiro M, Zhou X-R, Zhu Q-H, Dennis ES, Upadhyaya NM (2005) Isolation and characterization of a Ds-tagged rice (Oryza sativa L.) GA-responsive dwarf mutant defective in an early step of the gibberellin biosynthesis pathway. Plant Cell Rep 23:819–833PubMedCrossRefGoogle Scholar
  97. 97.
    Matsumoto T, Wu JZ, Kanamori H, Katayose Y, Fujisawa M, Namiki N, Mizuno H, Yamamoto K, Antonio BA, Baba T, Sakata K, Nagamura Y, Aoki H, Arikawa K, Arita K, Bito T, Chiden Y, Fujitsuka N, Fukunaka R, Hamada M, Harada C, Hayashi A, Hijishita S, Honda M, Hosokawa S, Ichikawa Y, Idonuma A, Iijima M, Ikeda M, Ikeno M, Ito K, Ito S, Ito T, Ito Y, Ito Y, Iwabuchi A, Kamiya K, Karasawa W, Kurita K, Katagiri S, Kikuta A, Kobayashi H, Kobayashi N, Machita K, Maehara T, Masukawa M, Mizubayashi T, Mukai Y, Nagasaki H, Nagata Y, Naito S, Nakashima M, Nakama Y, Nakamichi Y, Nakamura M, Meguro A, Negishi M, Ohta I, Ohta T, Okamoto M, Ono N, Saji S, Sakaguchi M, Sakai K, Shibata M, Shimokawa T, Song JY, Takazaki Y, Terasawa K, Tsugane M, Tsuji K, Ueda S, Waki K, Yamagata H, Yamamoto M, Yamamoto S, Yamane H, Yoshiki S, Yoshihara R, Yukawa K, Zhong HS, Yano M, Sasaki T, Yuan QP, Shu OT, Liu J, Jones KM, Gansberger K, Moffat K, Hill J, Bera J, Fadrosh D, Jin SH, Johri S, Kim M, Overton L, Reardon M, Tsitrin T, Vuong H, Weaver B, Ciecko A, Tallon L, Jackson J, Pai G, Van Aken S, Utterback T, Reidmuller S, Feldblyum T, Hsiao J, Zismann V, Iobst S, de Vazeille AR, Buell CR, Ying K, Li Y, Lu TT, Huang YC, Zhao Q, Feng Q, Zhang L, Zhu JJ, Weng QJ, Mu J, Lu YQ, Fan DL, Liu YL, Guan JP, Zhang YJ, Yu SL, Liu XH, Zhang Y, Hong GF, Han B, Choisne N, Demange N, Orjeda G, Samain S, Cattolico L, Pelletier E, Couloux A, Segurens B, Wincker P, D’Hont A, Scarpelli C, Weissenbach J, Salanoubat M, Quetier F, Yu Y, Kim HR, Rambo T, Currie J, Collura K, Luo MZ, Yang TJ, Ammiraju JSS, Engler F, Soderlund C, Wing RA, Palmer LE, de la Bastide M, Spiegel L, Nascimento L, Zutavern T, O’Shaughnessy A, Dike S, Dedhia N, Preston R, Balija V, McCombie WR, Chow TY, Chen HH, Chung MC, Chen CS, Shaw JF, Wu HP, Hsiao KJ, Chao YT, Chu MK, Cheng CH, Hour AL, Lee PF, Lin SJ, Lin YC, Liou JY, Liu SM, Hsing YI, Raghuvanshi S, Mohanty A, Bharti AK, Gaur A, Gupta V, Kumar D, Ravi V, Vij S, Kapur A, Khurana P, Khurana P, Khurana JP, Tyagi AK, Gaikwad K, Singh A, Dalal V, Srivastava S, Dixit A, Pal AK, Ghazi IA, Yadav M, Pandit A, Bhargava A, Sureshbabu K, Batra K, Sharma TR, Mohapatra T, Singh NK, Messing J, Nelson AB, Fuks G, Kavchok S, Keizer G, Llaca ELV, Song RT, Tanyolac B, Young S, Il KH, Hahn JH, Sangsakoo G, Vanavichit A, de Mattos LAT, Zimmer PD, Malone G, Dellagostin O, de Oliveira AC, Bevan M, Bancroft I, Minx P, Cordum H, Wilson R, Cheng ZK, Jin WW, Jiang JM, Leong SA, Iwama H, Gojobori T, Itoh T, Niimura Y, Fujii Y, Habara T, Sakai H, Sato Y, Wilson G, Kumar K, McCouch S, Juretic N, Hoen D, Wright S, Bruskiewich R, Bureau T, Miyao A, Hirochika H, Nishikawa T, Kadowaki K, Sugiura M, Project IRGS (2005) The map-based sequence of the rice genome. Nature 436:793–800CrossRefGoogle Scholar
  98. 98.
    Miyao A, Hirochika H (2004) In silico mutant screening of rice using the mutant panel database. Plant Cell Physiol 45:S38Google Scholar
  99. 99.
    Miyao A, Iwasaki Y, Kitano H, Itoh J, Maekawa M, Murata K, Yatou O, Nagato Y, Hirochika H (2007) A large-scale collection of phenotypic data describing an insertional mutant population to facilitate functional analysis of rice genes. Plant Mol Biol 63:625–635PubMedCrossRefGoogle Scholar
  100. 100.
    Miyao A, Nakagome M, Ohnuma T, Yamagata H, Kanamori H, Katayose Y, Takahashi A, Matsumoto T, Hirochika H (2012) Molecular spectrum of somaclonal variation in regenerated rice revealed by whole-genome sequencing. Plant Cell Physiol 53:256–264PubMedCrossRefGoogle Scholar
  101. 101.
    Miyao A, Tanaka K, Murata K, Sawaki H, Takeda S, Abe K, Shinozuka Y, Onosato K, Hirochika H (2003) Target site specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome. Plant Cell 15:1771–1780PubMedCrossRefGoogle Scholar
  102. 102.
    Moon S, Jung KH, Lee DE, Lee DY, Lee J, An K, Kang HG, An G (2006) The rice FON1 gene controls vegetative and reproductive development by regulating shoot apical meristem size. Mol Cells 21:147–152PubMedGoogle Scholar
  103. 103.
    Mori M, Tomita C, Hayashi N, Hasegawa M, Sugimoto K, Sekimoto H, Hirochika H, Kikuchi S (2004) Disease resistance of a lesion mimic mutant obtained by rice activation tagging. Plant Cell Physiol 45:S142Google Scholar
  104. 104.
    Nakagawa Y, Machida C, Machida Y, Toriyama K (2000) Frequency and pattern of transposition of the maize transposable element Ds in transgenic rice plants. Plant Cell Physiol 41:733–742PubMedCrossRefGoogle Scholar
  105. 105.
    Nakamura A, Fukuda A, Sakai S, Tanaka Y (2006) Molecular cloning, functional expression and subcellular localization of two putative vacuolar voltage-gated chloride channels in rice (Oryza sativa L.). Plant Cell Physiol 47:32–42PubMedCrossRefGoogle Scholar
  106. 106.
    Nakazaki T, Okumoto Y, Horibata A, Yamahira S, Teraishi M, Nishida H, Inoue H, Tanisaka T (2003) Mobilization of a transposon in the rice genome. Nature 421:170–172PubMedCrossRefGoogle Scholar
  107. 107.
    Ning J, Zhang B, Wang N, Zhou Y, Xiong L (2011) Increased leaf angle1, a Raf-like MAPKKK that interacts with a nuclear protein family, regulates mechanical tissue formation in the lamina joint of rice. Plant Cell 23:4334–4347PubMedCrossRefGoogle Scholar
  108. 108.
    Nishimura H, Ahmed N, Tsugane K, Iida S, Maekawa M (2008) Distribution and mapping of an active autonomous aDart element responsible for mobilizing nonautonomous nDart1 transposons in cultivated rice varieties. Theor Appl Genet 116:395–405PubMedCrossRefGoogle Scholar
  109. 109.
    Nonomura KI, Miyoshi K, Eiguchi M, Suzuki T, Miyao A, Hirochika H, Kurata N (2003) The MSP1 gene is necessary to restrict the number of cells entering into male and female sporogenesis and to initiate anther wall formation in rice. Plant Cell 15:1728–1739PubMedCrossRefGoogle Scholar
  110. 110.
    Nonomura KI, Nakano M, Murata K, Miyoshi K, Eiguchi M, Miyao A, Hirochika H, Kurata N (2004) An insertional mutation in the rice PAIR2 gene, the ortholog of Arabidopsis ASY1, results in a defect in homologous chromosome pairing during meiosis. Mol Genet Genomics 271:121–129PubMedCrossRefGoogle Scholar
  111. 111.
    Nonomura KL, Nakano M, Fukuda T, Eiguchi M, Miyao A, Hirochika H, Kurata N (2004) The novel gene HOMOLOGOUS PAIRING ABERRATION IN RICE MEIOSIS1 of rice encodes a putative coiled-coil protein required for homologous chromosome pairing in meiosis. Plant Cell 16:1008–1020PubMedCrossRefGoogle Scholar
  112. 112.
    O’Malley RC, Ecker JR (2010) Linking genotype to phenotype using the Arabidopsis unimutant collection. Plant J 61:928–940PubMedCrossRefGoogle Scholar
  113. 113.
    Park D-S, Park S-K, Han S-I, Wang H-J, Jun N-S, Manigbas N, Woo Y-M, Ahn B-O, Yun D-W, Yoon U-H, Kim Y-H, Lee M-C, Kim D-H, Nam M-H, Han C-D, Kang H-W, Yi G (2009) Genetic variation through dissociation (Ds) insertional mutagenesis system for rice in Korea: progress and current status. Mol Breed 24:1–15CrossRefGoogle Scholar
  114. 114.
    Park G-G, Park J-J, Yoon J, Yu S-N, An G (2010) A RING finger E3 ligase gene Oryza sativa delayed seed germination 1 (OsDSG1), controls seed germination and stress responses in rice. Plant Mol Biol 74:467–478PubMedCrossRefGoogle Scholar
  115. 115.
    Park J-J, Jin P, Yoon J, Yang J-I, Jeong H, Ranathunge K, Schreiber L, Franke R, Lee I-J, An G (2012) Mutation in wilted dwarf and lethal (WDL1) causes abnormal cuticle formation and rapid water loss in rice. Plant Mol Biol 74:91–103CrossRefGoogle Scholar
  116. 116.
    Park J-J, Yi J, Yoon J, Cho L-H, Ping J, Jeong HJ, Cho SK, Kim WT, An G (2011) OsPUB15, an E3 ubiquitin ligase, functions to reduce cellular oxidative stress during seedling establishment. Plant J 65:194–205PubMedCrossRefGoogle Scholar
  117. 117.
    Park S, Jun N, Kim C, Oh T, Huang J, Xuan Y-H, Park S, Je B, Piao H, Park S, Cha Y, Ahn B, Ji H, Lee M, Suh S, Nam M-H, Eun M, Yi G, Yun D, Han C-D (2007) Analysis of gene-trap Ds rice populations in Korea. Plant Mol Biol 65:373–384PubMedCrossRefGoogle Scholar
  118. 118.
    Park S, Kim C, Je B, Park S, Park S, Piao H, Xuan Y-H, Choe M, Satoh K, Kikuchi S, Lee K, Cha Y, Ahn B, Ji H, Yun D, Lee M, Suh S-C, Eun M, Han C-D (2007) A Ds-insertion mutant of OSH6 (Oryza sativa homeobox 6) exhibits outgrowth of vestigial leaf-like structures, bracts, in rice. Planta 227:1–12PubMedCrossRefGoogle Scholar
  119. 119.
    Peng H, Huang H, Yang Y, Zhai Y, Wu J, Huang D, Lu T (2005) Functional analysis of GUS expression patterns and T-DNA integration characteristics in rice enhancer trap lines. Plant Sci 168:1571–1579CrossRefGoogle Scholar
  120. 120.
    Petit J, Bourgeois E, Stenger W, Bès M, Droc G, Meynard D, Courtois B, Ghesquière A, Sabot F, Panaud O, Guiderdoni E (2009) Diversity of the Ty-1 copia retrotransposon Tos17 in rice (Oryza sativa L.) and the AA genome of the Oryza genus. Mol Genet Genomics 282:633–652PubMedCrossRefGoogle Scholar
  121. 121.
    Phelps CB, Brand AH (1998) Ectopic gene expression in Drosophila using GAL4 system. Methods 14:367–379PubMedCrossRefGoogle Scholar
  122. 122.
    Piao H-L, Xuan Y-H, Park S, Je B, Park S, Park S, Kim C, Huang J, Wang G, Kim M, Kang S, Lee I-J, Kwon T-R, Kim Y, Yeo U-S, Yi G, Son D, Han C-D (2010) OsCIPK31, a CBL-interacting protein kinase is involved in germination and seedling growth under abiotic stress conditions in rice plants. Mol Cells 30:19–27PubMedCrossRefGoogle Scholar
  123. 123.
    Piffanelli P, Droc G, Mieulet D, Lanau N, Bès M, Bourgeois E, Rouvière C, Gavory F, Cruaud C, Ghesquière A, Guiderdoni E (2007) Large-scale characterization of Tos17 insertion sites in a rice T-DNA mutant library. Plant Mol Biol 65:587–601PubMedCrossRefGoogle Scholar
  124. 124.
    Plett D, Safwat G, Gilliham M, Skrumsager Moller I, Roy S, Shirley N, Jacobs A, Johnson A, Tester M (2010) Improved salinity tolerance of rice through cell type-specific expression of AtHKT1;1. PLoS One 5:e12571PubMedCrossRefGoogle Scholar
  125. 125.
    Qu S, Desai A, Wing R, Sundaresan V (2008) A versatile transposon-based activation tag vector system for functional genomics in cereals and other monocot plants. Plant Physiol 146:189–199PubMedCrossRefGoogle Scholar
  126. 126.
    Ryu CH, You JH, Kang HG, Hur JH, Kim YH, Han MJ, An KS, Chung BC, Lee CH, An GH (2004) Generation of T-DNA tagging lines with a bidirectional gene trap vector and the establishment of an insertion-site database. Plant Mol Biol 54:489–502PubMedCrossRefGoogle Scholar
  127. 127.
    Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Agrawal GK, Takeda S, Abe K, Miyao A, Hirochika H, Kitano H, Ashikari M, Matsuoka M (2004) An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol 134:1642–1653PubMedCrossRefGoogle Scholar
  128. 128.
    Sallaud C, Gay C, Larmande P, Bes M, Piffanelli P, Piegu B, Droc G, Regad F, Bourgeois E, Meynard D, Perin C, Sabau X, Ghesquiere A, Glaszmann JC, Delseny M, Guiderdoni E (2004) High throughput T-DNA insertion mutagenesis in rice: a first step towards in silico reverse genetics. Plant J 39:450–464PubMedCrossRefGoogle Scholar
  129. 129.
    Sallaud C, Meynard D, van Boxtel J, Gay C, Bes M, Brizard JP, Larmande P, Ortega D, Raynal M, Portefaix M, Ouwerkerk PB, Rueb S, Delseny M, Guiderdoni E (2003) Highly efficient production and characterization of T-DNA plants for rice (Oryza sativa L.) functional genomics. Theor Appl Genet 106:1396–1408PubMedGoogle Scholar
  130. 130.
    Sato Y, Sentoku N, Miura Y, Hirochika H, Kitano H, Matsuoka M (1999) Loss-of-function mutations in the rice homeobox gene OSH15 affect the architecture of internodes resulting in dwarf plants. EMBO J 18:992–1002PubMedCrossRefGoogle Scholar
  131. 131.
    Shen Y, Zhang Y, Yang C, Lan Y, Liu L, Liu S, Chen Z, Ren G, Wan J (2012) Mutation of OsALDH7 causes a yellow-colored endosperm associated with accumulation of oryzamutaic acid A in rice. Planta 235:433–441PubMedCrossRefGoogle Scholar
  132. 132.
    Shimamoto K, Miyazaki C, Hashimoto H, Izawa T, Itoh K, Terada R, Inagaki Y, Iida S (1993) Trans-activation and stable integration of the maize transposable element Ds cotransfected with the Ac transposase gene in transgenic rice plants. Mol Gen Genet 239:354–360PubMedCrossRefGoogle Scholar
  133. 133.
    Suzuki T, Eiguchi M, Kumamaru T, Satoh H, Matsusaka H, Moriguchi K, Nagato Y, Kurata N (2007) MNU-induced mutant pools and high performance TILLING enable finding of any gene mutation in rice. Mol Genet Genomics 279:213–223PubMedCrossRefGoogle Scholar
  134. 134.
    Tabuchi M, Sugiyama K, Ishiyama K, Inoue E, Sato T, Takahashi H, Yamaya T (2005) Severe reduction in growth rate and grain filling of rice mutants lacking OsGS1;1, a cytosolic glutamine synthetase1;1. Plant J 42:641–651PubMedCrossRefGoogle Scholar
  135. 135.
    Takagi K, Maekawa M, Tsugane K, Iida S (2010) Transposition and target preferences of an active nonautonomous DNA transposon nDart1 and its relatives belonging to the hAT superfamily in rice. Mol Genet Genomics 284:343–355PubMedCrossRefGoogle Scholar
  136. 136.
    Takano M, Inagaki N, Xie XZ, Yuzurihara N, Hihara F, Ishizuka T, Yano M, Nishimura M, Miyao A, Hirochika H, Shinomura T (2005) Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice. Plant Cell 17:3311–3325PubMedCrossRefGoogle Scholar
  137. 137.
    Takano M, Kanegae H, Shinomura T, Miyao A, Hirochika H, Furuya W (2001) Isolation and characterization of rice phytochrome A mutants. Plant Cell 13:521–534PubMedGoogle Scholar
  138. 138.
    Tanaka K, Murata K, Yamazaki M, Onosato K, Miyao A, Hirochika H (2003) Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall. Plant Physiol 133:73–83PubMedCrossRefGoogle Scholar
  139. 139.
    Thangasamy S, Guo C, Chuang M, Lai M, Chen J, Jauh G (2011) Rice SIZ1, a SUMO E3 ligase, controls spikelet fertility through regulation of anther dehiscence. New Phytol 189:869–882PubMedCrossRefGoogle Scholar
  140. 140.
    Till B, Cooper J, Tai T, Colowit P, Greene E, Henikoff S, Comai L (2007) Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol 7:19PubMedCrossRefGoogle Scholar
  141. 141.
    Tsai H, Howell T, Nitcher R, Missirian V, Watson B, Ngo KJ, Lieberman M, Fass J, Uauy C, Tran RK, Khan AA, Filkov V, Tai TH, Dubcovsky J, Comai L (2011) Discovery of rare mutations in populations: TILLING by sequencing. Plant Physiol 156:1257–1268PubMedCrossRefGoogle Scholar
  142. 142.
    Tsugane K, Maekawa M, Takagi K, Takahara H, Qian Q, Eun C-H, Iida S (2006) An active DNA transposon nDart causing leaf variegation and mutable dwarfism and its related elements in rice. Plant J 45:46–57PubMedCrossRefGoogle Scholar
  143. 143.
    Upadhyaya N, Zhu Q-H, Zhou X-R, Eamens A, Hoque M, Ramm K, Shivakkumar R, Smith K, Pan S-T, Li S, Peng K, Kim S, Dennis E (2006) Dissociation (Ds) constructs, mapped Ds launch pads and a transiently-expressed transposase system suitable for localized insertional mutagenesis in rice. Theor Appl Genet 112:1326–1341PubMedCrossRefGoogle Scholar
  144. 144.
    van Enckevort LJG, Droc G, Piffanelli P, Greco R, Gagneur C, Weber C, Gonzalez VM, Cabot P, Fornara F, Berri S, Miro B, Lan P, Rafel M, Capell T, Puigdomenech P, Ouwerkerk PBF, Meijer AH, Pe E, Colombo L, Christou P, Guiderdoni E, Pereira A (2005) EU-OSTID: a collection of transposon insertional mutants for functional genomics in rice. Plant Mol Biol 59:99–110PubMedCrossRefGoogle Scholar
  145. 145.
    Warthmann N, Chen H, Ossowski S, Weigel D, Hervé P (2008) Highly specific gene silencing by artificial miRNAs in rice. PLoS One 3:e1829PubMedCrossRefGoogle Scholar
  146. 146.
    Wesley SV, Helliwell CA, Smith NA, Wang MB, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581–590PubMedCrossRefGoogle Scholar
  147. 147.
    Woo Y-M, Park H-J, Su’udi M, Yang J-I, Park J-J, Back K, Park Y-M, An G (2007) Constitutively wilted 1, a member of the rice YUCCA gene family, is required for maintaining water homeostasis and an appropriate root to shoot ratio. Plant Mol Biol 65:125–136PubMedCrossRefGoogle Scholar
  148. 148.
    Wu C, Li X, Yuan W, Chen G, Kilian A, Li J, Xu C, Li X, Zhou D-X, Wang S, Zhang Q (2003) Development of enhancer trap lines for functional analysis of the rice genome. Plant J 35:418–427PubMedCrossRefGoogle Scholar
  149. 149.
    Wu C, You C, Li C, Long T, Chen G, Byrne ME, Zhang Q (2008) RID1, encoding a Cys2/His2-type zinc finger transcription factor, acts as a master switch from vegetative to floral development in rice. Proc Natl Acad Sci 105:12915–12920PubMedCrossRefGoogle Scholar
  150. 150.
    Wu JL, Wu C, Lei C, Baraoidan M, Bordeos A, Madamba MR, Ramos-Pamplona M, Mauleon R, Portugal A, Ulat VJ (2005) Chemical- and irradiation-induced mutants of indica rice IR64 for forward and reverse genetics. Plant Mol Biol 59:85–97PubMedCrossRefGoogle Scholar
  151. 151.
    Wuriyanghan H, Zhang B, Cao W-H, Ma B, Lei G, Liu Y-F, Wei W, Wu H-J, Chen L-J, Chen H-W, Cao Y-R, He S-J, Zhang W-K, Wang X-J, Chen S-Y, Zhang J-S (2009) The ethylene receptor ETR2 delays floral transition and affects starch accumulation in rice. Plant Cell 21:1473–1494PubMedCrossRefGoogle Scholar
  152. 152.
    Yamaguchi T, Lee DY, Miyao A, Hirochika H, An GH, Hirano HY (2006) Functional diversification of the two C-class MADS box genes OSMADS3 and OSMADS58 in Oryza sativa. Plant Cell 18:15–28PubMedCrossRefGoogle Scholar
  153. 153.
    Yamazaki M, Tsugawa H, Miyao A, Yano M, Wu J, Yamamoto S, Matsumoto T, Sasaki T, Hirochika H (2001) The rice retrotransposon Tos17 prefers low-copy-number sequences as integration targets. Mol Genet Genomics 265:336–344PubMedCrossRefGoogle Scholar
  154. 154.
    Yang Y, Peng H, Huang H, Wu J, Jia S, Huang D, Lu T (2004) Large-scale production of enhancer trapping lines for rice functional genomics. Plant Sci 167:281–288CrossRefGoogle Scholar
  155. 155.
    Yi J, Kim S-R, Lee D-Y, Moon S, Lee Y-S, Jung K-H, Hwang I, An G (2012) The rice gene DEFECTIVE TAPETUM AND MEIOCYTES 1 (DTM1) is required for early tapetum development and meiosis. Plant J 70:256–270PubMedCrossRefGoogle Scholar
  156. 156.
    Yuan W, Li X, Chang Y, Wen R, Chen G, Zhang Q, Wu C (2009) Mutation of the rice gene PAIR3 results in lack of bivalent formation in meiosis. Plant J 59:303–315PubMedCrossRefGoogle Scholar
  157. 157.
    Zhang J, Guo D, Chang Y, You C, Li X, Dai X, Weng Q, Zhang J, Chen G, Li X, Liu H, Han B, Zhang Q, Wu C (2007) Non-random distribution of T-DNA insertions at various levels of the genome hierarchy as revealed by analyzing 13 804 T-DNA flanking sequences from an enhancer-trap mutant library. Plant J 49:947–959PubMedCrossRefGoogle Scholar
  158. 158.
    Zhang J, Li C, Wu C, Xiong L, Chen G, Zhang Q, Wang S (2006) RMD: a rice mutant database for functional analysis of the rice genome. Nucleic Acids Res 34:D745–D748PubMedCrossRefGoogle Scholar
  159. 159.
    Zhang Q, Li J, Xue Y, Han B, Deng XW (2008) Rice 2020: a call for an international coordinated effort in rice functional genomics. Mol Plant 1:715–719PubMedCrossRefGoogle Scholar
  160. 160.
    Zhu Q-H, Hoque M, Dennis E, Upadhyaya N (2003) Ds tagging of BRANCHED FLORETLESS 1 (BFL1) that mediates the transition from spikelet to floret meristem in rice (Oryza sativa L). BMC Plant Biol 3:6PubMedCrossRefGoogle Scholar
  161. 161.
    Zhu Q-H, Ramm K, Shivakkumar R, Dennis ES, Upadhyaya NM (2004) The ANTHER INDEHISCENCE1 gene encoding a single MYB domain protein is involved in anther development in rice. Plant Physiol 135:1514–1525PubMedCrossRefGoogle Scholar
  162. 162.
    Zou L-P, Sun X-H, Zhang Z-G, Liu P, Wu J-X, Tian C-J, Qiu J-L, Lu T-G (2011) Leaf rolling controlled by the homeodomain leucine zipper class IV gene Roc5 in rice. Plant Physiol 156:1589–1602PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Gaëtan Droc
    • 1
  • Gynheung An
    • 2
  • Changyin Wu
    • 3
  • Yue-ie C. Hsing
    • 4
  • Hirohiko Hirochika
    • 5
  • Andy Pereira
    • 6
  • Venkatesan Sundaresan
    • 7
  • Chang-Deok Han
    • 8
  • Narayana Upadhyaya
    • 9
  • Srinivasan Ramachandran
    • 10
  • Luca Comai
    • 11
  • Hei Leung
    • 12
  • Emmanuel Guiderdoni
    • 1
  1. 1.UMR AGAP, CIRADMontpellier Cedex 5France
  2. 2.Crop Biotech InstituteKyung Hee UniversityGiheung, YonginKorea
  3. 3.National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
  4. 4.Institute of Plant and Microbial Biology, Academia SinicaTaipeiTaiwan
  5. 5.National Institute of Agrobiological SciencesTsukubaJapan
  6. 6.Department of Crop, Soil and Environmental SciencesUniversity of ArkansasFayettevilleUSA
  7. 7.College of Biological SciencesUniversity of CaliforniaDavisUSA
  8. 8.Division of Applied Life Sciences, Department of Biochemistry, PMBBRCGyeongsang National UniversityJinjuKorea
  9. 9.CSIRO Plant IndustryCanberraAustralia
  10. 10.Rice Functional Genomics, Temasek Life Sciences LaboratoryNational University of SingaporeSingaporeSingapore
  11. 11.UC Davis Genome Center, Department of Plant Biology, College of Biological SciencesUniversity of CaliforniaDavisUSA
  12. 12.Genetic Diversity and Gene Discovery ProgramInternational Rice Research InstituteLos BanosThe Philippines

Personalised recommendations