Genetics and Genomics of Rice pp 279-295

Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 5) | Cite as

Panicle Development

  • Dabing Zhang
  • Zheng Yuan
  • Gynheung An
  • Ludovico Dreni
  • Jianping Hu
  • Martin M. Kater
Chapter

Abstract

Rice evolved a diversified determinate inflorescence (also called panicle), and rice panicle development includes high orderly and complex biological events including the formation of lateral branches and spikelet organs. Understanding the mechanism of rice panicle morphogenesis is of importance in fundamental biology and helpful for crop improvement. In this chapter, we summarize the recent understanding of genetic regulators in determining rice panicle development ranging from the initiation of inflorescence, specification of lateral branches, spikelet organs, and reproductive cell formation.

References

  1. 1.
    Itoh J, Nonomura K, Ikeda K et al (2005) Rice plant development: from zygote to spikelet. Plant Cell Physiol 46(1):23–47PubMedCrossRefGoogle Scholar
  2. 2.
    Yuan Z, Gao S, Xue DW et al (2009) RETARDED PALEA1 controls palea development and floral zygomorphy in rice. Plant Physiol 149(1):235–244PubMedCrossRefGoogle Scholar
  3. 3.
    Zhang D, Wilson Z (2009) Stamen specification and anther development in rice. Chin Sci Bull 54(14):2342–2353CrossRefGoogle Scholar
  4. 4.
    Kim SL, Lee S, Kim HJ, Nam HG, An G (2007) OsMADS51 is a short-day flowering promoter that functions upstream of Ehd1, OsMADS14, and Hd3a. Plant Physiol 145(4):1484–1494PubMedCrossRefGoogle Scholar
  5. 5.
    Yoshida H, Nagato Y (2011) Flower development in rice. J Exp Bot 62(14):4719–4730PubMedCrossRefGoogle Scholar
  6. 6.
    Endo-Higashi N, Izawa T (2011) Flowering time genes Heading date 1 and Early heading date 1 together control panicle development in rice. Plant Cell Physiol 52(6):1083–1094PubMedCrossRefGoogle Scholar
  7. 7.
    Izawa T, Takahashi Y, Yano M (2003) Comparative biology comes into bloom: genomic and genetic comparison of flowering pathways in rice and Arabidopsis. Curr Opin Plant Biol 6(2):113–120PubMedCrossRefGoogle Scholar
  8. 8.
    Komiya R, Ikegami A, Tamaki S, Yokoi S, Shimamoto K (2008) Hd3a and RFT1 are essential for flowering in rice. Development 135(4):767–774PubMedCrossRefGoogle Scholar
  9. 9.
    Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K (2007) Hd3a protein is a mobile flowering signal in rice. Science 316(5827):1033–1036PubMedCrossRefGoogle Scholar
  10. 10.
    Yano M, Katayose Y, Ashikari M et al (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12(12):2473–2484PubMedGoogle Scholar
  11. 11.
    Doi K, Izawa T, Fuse T et al (2004) Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev 18(8):926–936PubMedCrossRefGoogle Scholar
  12. 12.
    Itoh H, Nonoue Y, Yano M, Izawa T (2010) A pair of floral regulators sets critical day length for Hd3a florigen expression in rice. Nat Genet 42(7):635–638PubMedCrossRefGoogle Scholar
  13. 13.
    Xue W, Xing Y, Weng X et al (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40(6):761–767PubMedCrossRefGoogle Scholar
  14. 14.
    Lee S, Kim J, Han J-J, Han M-J, An G (2004) Functional analyses of the flowering time gene OsMADS50, the putative SUPPRESSOR OF OVEREXPRESSION OF CO 1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in rice. Plant J 38(5):754–764PubMedCrossRefGoogle Scholar
  15. 15.
    Ryu CH, Lee S, Cho LH, Kim SL, Lee YS, Choi SC, Jeong HJ, Yi J, Park SJ, Han CD, An G (2009) OsMADS50 and OsMADS56 function antagonistically in regulating LD-dependent flowering in rice. Plant Cell Environ 32(10):1412–1427PubMedCrossRefGoogle Scholar
  16. 16.
    Ingram GC, Goodrich J, Wilkinson MD, Simon R, Haughn GW, Coen ES (1995) Parallels between UNUSUAL FLORAL ORGANS and FIMBRIATA, genes controlling flower development in Arabidopsis and Antirrhinum. Plant Cell 7(9):1501–1510PubMedGoogle Scholar
  17. 17.
    Thompson BE, Hake S (2009) Translational biology: from Arabidopsis flowers to grass inflorescence architecture. Plant Physiol 149(1):38–45PubMedCrossRefGoogle Scholar
  18. 18.
    Suzaki T, Sato M, Ashikari M, Miyoshi M, Nagato Y, Hirano HY (2004) The gene FLORAL ORGAN NUMBER1 regulates floral meristem size in rice and encodes a leucine-rich repeat receptor kinase orthologous to Arabidopsis CLAVATA1. Development 131(22):5649–5657PubMedCrossRefGoogle Scholar
  19. 19.
    Bommert P, Lunde C, Nardmann J et al (2005) thick tassel dwarf1 encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine-rich repeat receptor-like kinase. Development 132(6):1235–1245PubMedCrossRefGoogle Scholar
  20. 20.
    Chu H, Qian Q, Liang WQ et al (2006) The floral organ number4 gene encoding a putative ortholog of Arabidopsis CLAVATA3 regulates apical meristem size in rice. Plant Physiol 142(3):1039–1052PubMedCrossRefGoogle Scholar
  21. 21.
    Suzaki T, Toriba T, Fujimoto M, Tsutsumi N, Kitano H, Hirano HY (2006) Conservation and diversification of meristem maintenance mechanism in Oryza sativa: function of the FLORAL ORGAN NUMBER2 gene. Plant Cell Physiol 47(12):1591–1602PubMedCrossRefGoogle Scholar
  22. 22.
    Chu H, Zhang D (2007) The shoot apical meristem size regulated by FON4 in rice. Plant Signal Behav 2(2):115–116PubMedCrossRefGoogle Scholar
  23. 23.
    Zhang X, Zong J, Liu J, Yin J, Zhang D (2010) Genome-wide analysis of WOX gene family in rice, sorghum, maize, Arabidopsis and poplar. J Integr Plant Biol 52(11):1016–1026PubMedCrossRefGoogle Scholar
  24. 24.
    Dai M, Hu Y, Zhao Y, Liu H, Zhou DX (2007) A WUSCHEL-LIKE HOMEOBOX gene represses a YABBY gene expression required for rice leaf development. Plant Physiol 144(1):380–390PubMedCrossRefGoogle Scholar
  25. 25.
    Nardmann J, Werr W (2006) The shoot stem cell niche in angiosperms: expression patterns of WUS orthologues in rice and maize imply major modifications in the course of mono- and dicot evolution. Mol Biol Evol 23(12):2492–2504PubMedCrossRefGoogle Scholar
  26. 26.
    Barazesh S, McSteen P (2008) Hormonal control of grass inflorescence development. Trends Plant Sci 13(12):656–662PubMedCrossRefGoogle Scholar
  27. 27.
    Kurakawa T, Ueda N, Maekawa M et al (2007) Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 445(7128):652–655PubMedCrossRefGoogle Scholar
  28. 28.
    Ashikari M, Sakakibara H, Lin S et al (2005) Cytokinin oxidase regulates rice grain production. Science 309(5735):741–745PubMedCrossRefGoogle Scholar
  29. 29.
    Wang Y, Li J (2005) The plant architecture of rice (Oryza sativa). Plant Mol Biol 59(1):75–84PubMedCrossRefGoogle Scholar
  30. 30.
    Furutani I, Sukegawa S, Kyozuka J (2006) Genome-wide analysis of spatial and temporal gene expression in rice panicle development. Plant J 46(3):503–511PubMedCrossRefGoogle Scholar
  31. 31.
    Johnson C, Kasprzewska A, Tennessen K et al (2009) Clusters and superclusters of phased small RNAs in the developing inflorescence of rice. Genome Res 19(8):1429–1440PubMedCrossRefGoogle Scholar
  32. 32.
    Rao NN, Prasad K, Kumar PR, Vijayraghavan U (2008) Distinct regulatory role for RFL, the rice LFY homolog, in determining flowering time and plant architecture. Proc Natl Acad Sci U S A 105(9):3646–3651PubMedCrossRefGoogle Scholar
  33. 33.
    Komatsu M, Chujo A, Nagato Y, Shimamoto K, Kyozuka J (2003) FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets. Development 130(16):3841–3850PubMedCrossRefGoogle Scholar
  34. 34.
    Komatsu M, Maekawa M, Shimamoto K, Kyozuka J (2001) The LAX1 and FRIZZY PANICLE 2 genes determine the inflorescence architecture of rice by controlling rachis-branch and spikelet development. Dev Biol 231(2):364–373PubMedCrossRefGoogle Scholar
  35. 35.
    Zhu QH, Hoque MS, Dennis ES, Upadhyaya NM (2003) Ds tagging of BRANCHED FLORETLESS 1 (BFL1) that mediates the transition from spikelet to floret meristem in rice (Oryza sativa L). BMC Plant Biol 3:6PubMedCrossRefGoogle Scholar
  36. 36.
    Tabuchi H, Zhang Y, Hattori S et al (2011) LAX PANICLE2 of rice encodes a novel nuclear protein and regulates the formation of axillary meristems. Plant Cell 23(9):3276–3287PubMedCrossRefGoogle Scholar
  37. 37.
    Benjamins R, Scheres B (2008) Auxin: the looping star in plant development. Annu Rev Plant Biol 59:443–465PubMedCrossRefGoogle Scholar
  38. 38.
    Mockaitis K, Estelle M (2008) Auxin receptors and plant development: a new signaling paradigm. Annu Rev Cell Dev Biol 24:55–80PubMedCrossRefGoogle Scholar
  39. 39.
    McSteen P (2009) Hormonal regulation of branching in grasses. Plant Physiol 149(1):46–55PubMedCrossRefGoogle Scholar
  40. 40.
    Reinhardt D, Pesce ER, Stieger P et al (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426(6964):255–260PubMedCrossRefGoogle Scholar
  41. 41.
    Gallavotti A, Yang Y, Schmidt RJ, Jackson D (2008) The Relationship between auxin transport and maize branching. Plant Physiol 147(4):1913–1923PubMedCrossRefGoogle Scholar
  42. 42.
    Heisler MG, Ohno C, Das P et al (2005) Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr Biol 15(21):1899–1911PubMedCrossRefGoogle Scholar
  43. 43.
    Oikawa T, Kyozuka J (2009) Two-step regulation of LAX PANICLE1 protein accumulation in axillary meristem formation in rice. Plant Cell 21(4):1095–1108PubMedCrossRefGoogle Scholar
  44. 44.
    Greb T, Clarenz O, Schafer E et al (2003) Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation. Genes Dev 17(9):1175–1187PubMedCrossRefGoogle Scholar
  45. 45.
    Li X, Qian Q, Fu Z et al (2003) Control of tillering in rice. Nature 422(6932):618–621PubMedCrossRefGoogle Scholar
  46. 46.
    Samach A, Klenz JE, Kohalmi SE, Risseeuw E, Haughn GW, Crosby WL (1999) The UNUSUAL FLORAL ORGANS gene of Arabidopsis thaliana is an F-box protein required for normal patterning and growth in the floral meristem. Plant J 20(4):433–445PubMedCrossRefGoogle Scholar
  47. 47.
    Wilkinson M, Haughn G (1995) UNUSUAL FLORAL ORGANS controls meristem identity and organ primordia fate choice in Arabidopsis. Plant Cell 7:1485–1499PubMedGoogle Scholar
  48. 48.
    Ikeda K, Ito M, Nagasawa N, Kyozuka J, Nagato Y (2007) Rice ABERRANT PANICLE ORGANIZATION 1, encoding an F-box protein, regulates meristem fate. Plant J 51(6):1030–1040PubMedCrossRefGoogle Scholar
  49. 49.
    Ikeda K, Nagasawa N, Nagato Y (2005) ABERRANT PANICLE ORGANIZATION 1 temporally regulates meristem identity in rice. Dev Biol 282(2):349–360PubMedCrossRefGoogle Scholar
  50. 50.
    Zhang W, Xu Z, Chen W, Zhang L, Jin X, Wu X (2002) The research progress on erect panicle type of rice. J Shengyang Agric Univ 33(6):471–475Google Scholar
  51. 51.
    Huang X, Qian Q, Liu Z et al (2009) Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet 41(4):494–497PubMedCrossRefGoogle Scholar
  52. 52.
    Yan CJ, Zhou JH, Yan S et al (2007) Identification and characterization of a major QTL responsible for erect panicle trait in japonica rice (Oryza sativa L.). Theor Appl Genet 115(8):1093–1100PubMedCrossRefGoogle Scholar
  53. 53.
    Yi X, Zhang Z, Zeng S et al (2011) Introgression of qPE9-1 allele, conferring the panicle erectness, leads to the decrease of grain yield per plant in japonica rice (Oryza sativa L.). J Genet Genomics 38(5): 217–223PubMedCrossRefGoogle Scholar
  54. 54.
    Zhou Y, Zhu J, Li Z et al (2009) Deletion in a quantitative trait gene qPE9-1 associated with panicle erectness improves plant architecture during rice domestication. Genetics 183(1):315–324PubMedCrossRefGoogle Scholar
  55. 55.
    Zhu K, Tang D, Yan C et al (2010) Erect panicle2 encodes a novel protein that regulates panicle erectness in indica rice. Genetics 184(2):343–350PubMedCrossRefGoogle Scholar
  56. 56.
    Qiao Y, Piao R, Shi J et al (2011) Fine mapping and candidate gene analysis of dense and erect panicle 3, DEP3, which confers high grain yield in rice (Oryza sativa L.). Theor Appl Genet 122(7):1439–1449PubMedCrossRefGoogle Scholar
  57. 57.
    Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353(6339):31–37PubMedCrossRefGoogle Scholar
  58. 58.
    Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405(6783):200–203PubMedCrossRefGoogle Scholar
  59. 59.
    Theissen G (2001) Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4(1):75–85PubMedCrossRefGoogle Scholar
  60. 60.
    Liu C, Xi W, Shen L, Tan C, Yu H (2009) Regulation of floral patterning by flowering time genes. Dev Cell 16(5):711–722PubMedCrossRefGoogle Scholar
  61. 61.
    Malcomber ST, Kellogg EA (2004) Heterogeneous expression patterns and separate roles of the SEPALLATA gene LEAFY HULL STERILE1 in grasses. Plant Cell 16(7):1692–1706PubMedCrossRefGoogle Scholar
  62. 62.
    Malcomber ST, Kellogg EA (2005) SEPALLATA gene diversification: brave new whorls. Trends Plant Sci 10(9):427–435PubMedCrossRefGoogle Scholar
  63. 63.
    Zahn LM, Kong H, Leebens-Mack JH et al (2005) The evolution of the SEPALLATA subfamily of MADS-box genes: a preangiosperm origin with multiple duplications throughout angiosperm history. Genetics 169(4):2209–2223PubMedCrossRefGoogle Scholar
  64. 64.
    Arora R, Agarwal P, Ray S et al (2007) MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics 8:242–262PubMedCrossRefGoogle Scholar
  65. 65.
    Gao X, Liang W, Yin C et al (2010) The SEPALLATA-like gene OsMADS34 is required for rice inflorescence and spikelet development. Plant Physiol 153(2):728–740PubMedCrossRefGoogle Scholar
  66. 66.
    Kobayashi K, Maekawa M, Miyao A, Hirochika H, Kyozuka J (2010) PANICLE PHYTOMER2 (PAP2), encoding a SEPALLATA subfamily MADS-box protein, positively controls spikelet meristem identity in rice. Plant Cell Physiol 51(1):47–57PubMedCrossRefGoogle Scholar
  67. 67.
    Li M, Tang D, Wang K et al (2011) Mutations in the F-box gene LARGER PANICLE improve the panicle architecture and enhance the grain yield in rice. Plant Biotechnol J 9(9):1002–1013PubMedCrossRefGoogle Scholar
  68. 68.
    Li S, Qian Q, Fu Z et al (2009) Short panicle1 encodes a putative PTR family transporter and determines rice panicle size. Plant J 58(4):592–605PubMedCrossRefGoogle Scholar
  69. 69.
    Hong JP, Byun MY, Koo DH et al (2007) Suppression of RICE TELOMERE BINDING PROTEIN 1 results in severe and gradual developmental defects accompanied by genome instability in rice. Plant Cell 19(6):1770–1781PubMedCrossRefGoogle Scholar
  70. 70.
    Bommert P, Satoh-Nagasawa N, Jackson D, Hirano HY (2005) Genetics and evolution of inflorescence and flower development in grasses. Plant Cell Physiol 46(1):69–78PubMedCrossRefGoogle Scholar
  71. 71.
    Zanis MJ (2007) Grass spilelet genetics and duplicate gene comparisions. Int J Plant Sci 168(1):93–110CrossRefGoogle Scholar
  72. 72.
    Li H, Xue D, Gao Z et al (2009) A putative lipase gene EXTRA GLUME1 regulates both empty-glume fate and spikelet development in rice. Plant J 57(4):593–605PubMedCrossRefGoogle Scholar
  73. 73.
    Arber A (1934) The gramineae: a study of cereal, bamboo, and grass. Cambridge University Press, Cambridge, UKGoogle Scholar
  74. 74.
    Takeoka Y, Shimizu M, Wada T (1993) Panicles. In: Matsuo T, Hoshikawa K (eds) Science of the rice plant morphology, vol 1. Food and Agriculture Policy Research Center, Tokyo, pp 295–338Google Scholar
  75. 75.
    Hong L, Qian Q, Zhu K et al (2010) ELE restrains empty glumes from developing into lemmas. J Genet Genomics 37(2):101–115PubMedCrossRefGoogle Scholar
  76. 76.
    Yoshida A, Suzaki T, Tanaka W, Hirano HY (2009) The homeotic gene long sterile lemma (G1) specifies sterile lemma identity in the rice spikelet. Proc Natl Acad Sci U S A 106(47):20103–20108PubMedGoogle Scholar
  77. 77.
    Lee DY, Lee J, Moon S, Park SY, An G (2007) The rice heterochronic gene SUPERNUMERARY BRACT regulates the transition from spikelet meristem to floral meristem. Plant J 49(1):64–78PubMedCrossRefGoogle Scholar
  78. 78.
    Lee DY, An G (2012) Two AP2 family genes, supernumerary bract (SNB) and Osindeterminate spikelet 1 (OsIDS1), synergistically control inflorescence architecture and floral meristem establishment in rice. Plant J 69(3):445–461PubMedCrossRefGoogle Scholar
  79. 79.
    Zhu QH, Upadhyaya NM, Gubler F, Helliwell CA (2009) Over-expression of miR172 causes loss of spikelet determinacy and floral organ abnormalities in rice (Oryza sativa). BMC Plant Biol 9:149PubMedCrossRefGoogle Scholar
  80. 80.
    Kyozuka J, Kobayashi T, Morita M, Shimamoto K (2000) Spatially and temporally regulated expression of rice MADS box genes with similarity to Arabidopsis class A, B and C genes. Plant Cell Physiol 41(6):710–718PubMedCrossRefGoogle Scholar
  81. 81.
    Kater MM, Dreni L, Colombo L (2006) Functional conservation of MADS-box factors controlling floral organ identity in rice and Arabidopsis. J Exp Bot 57(13):3433–3444PubMedCrossRefGoogle Scholar
  82. 82.
    Preston JC, Kellogg EA (2006) Reconstructing the evolutionary history of paralogous APETALA1/FRUITFULL-like genes in grasses (Poaceae). Genetics 174(1):421–437PubMedCrossRefGoogle Scholar
  83. 83.
    Prusinkiewicz P, Erasmus Y, Lane B, Harder LD, Coen E (2007) Evolution and development of inflorescence architectures. Science 316(5830):1452–1456PubMedCrossRefGoogle Scholar
  84. 84.
    Reinheimer R, Zuloaga FO, Vegetti AC, Pozner R (2009) Diversification of inflorescence development in the PCK clade (Poaceae: Panicoideae: Paniceae). Am J Bot 96(3):549–564PubMedCrossRefGoogle Scholar
  85. 85.
    Ciaffi M, Paolacci AR, Tanzarella OA, Porceddu E (2011) Molecular aspects of flower development in grasses. Sex Plant Reprod 30:247–282CrossRefGoogle Scholar
  86. 86.
    Abebe T, Skadsen RW, Kaeppler HF (2004) Cloning and identification of highly expressed genes in barley lemma and palea. Crop Sci 44:942–950CrossRefGoogle Scholar
  87. 87.
    Ikeda K, Nagasawa N, Nagato Y (2004) Developmental course of inflorescence and spikelet in rice. Breed Sci 54:147–156CrossRefGoogle Scholar
  88. 88.
    Prasad K, Parameswaran S, Vijayraghavan U (2005) OsMADS1, a rice MADS-box factor, controls differentiation of specific cell types in the lemma and palea and is an early-acting regulator of inner floral organs. Plant J 43(6):915–928PubMedCrossRefGoogle Scholar
  89. 89.
    Wang N, Sang XC, Li YF et al (2010) Identification and gene mapping of a novel mutant supernumerary lodicules (snl) in rice. J Integr Plant Biol 52(3):265–272PubMedCrossRefGoogle Scholar
  90. 90.
    Mandel MA, Gustafson-Brown C, Savidge B, Yanofsky MF (1992) Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360(6401):273–277PubMedCrossRefGoogle Scholar
  91. 91.
    Jofuku KD, den Boer BG, Van Montagu M, Okamuro JK (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6(9):1211–1225PubMedGoogle Scholar
  92. 92.
    Kobayashi K, Yasuno N, Sato Y et al (2012) Inflorescence meristem identity in rice is specified by overlapping functions of three AP1/FUL-like MADS box genes and PAP2, a SEPALLATA MADS box gene. Plant Cell 24(5):1848–1859PubMedCrossRefGoogle Scholar
  93. 93.
    Agrawal GK, Abe K, Yamazaki M, Miyao A, Hirochika H (2005) Conservation of the E-function for floral organ identity in rice revealed by the analysis of tissue culture-induced loss-of-function mutants of the OsMADS1 gene. Plant Mol Biol 59(1):125–135PubMedCrossRefGoogle Scholar
  94. 94.
    Chen ZX, Wu JG, Ding WN, Chen HM, Wu P, Shi CH (2006) Morphogenesis and molecular basis on naked seed rice, a novel homeotic mutation of OsMADS1 regulating transcript level of AP3 homologue in rice. Planta 223(5):882–890PubMedCrossRefGoogle Scholar
  95. 95.
    Jeon JS, Jang S, Lee S et al (2000) leafy hull sterile1 is a homeotic mutation in a rice MADS box gene affecting rice flower development. Plant Cell 12(6):871–884PubMedGoogle Scholar
  96. 96.
    Li H, Liang W, Jia R et al (2010) The AGL6-like gene OsMADS6 regulates floral organ and meristem identities in rice. Cell Res 20(3):299–313PubMedCrossRefGoogle Scholar
  97. 97.
    Ohmori S, Kimizu M, Sugita M et al (2009) MOSAIC FLORAL ORGANS1, an AGL6-like MADS box gene, regulates floral organ identity and meristem fate in rice. Plant Cell 21(10):3008–3025PubMedCrossRefGoogle Scholar
  98. 98.
    Li H, Liang W, Yin C, Zhu L, Zhang D (2011) Genetic interaction of OsMADS3, DROOPING LEAF, and OsMADS13 in specifying rice floral organ identities and meristem determinacy. Plant Physiol 156(1):263–274PubMedCrossRefGoogle Scholar
  99. 99.
    Yamaguchi T, Nagasawa N, Kawasaki S, Matsuoka M, Nagato Y, Hirano HY (2004) The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. Plant Cell 16(2):500–509PubMedCrossRefGoogle Scholar
  100. 100.
    Jin Y, Luo Q, Tong H et al (2011) An AT-hook gene is required for palea formation and floral organ number control in rice. Dev Biol 359(2):277–288PubMedCrossRefGoogle Scholar
  101. 101.
    Luo Q, Zhou K, Zhao X et al (2005) Identification and fine mapping of a mutant gene for palealess spikelet in rice. Planta 221(2):222–230PubMedCrossRefGoogle Scholar
  102. 102.
    Ambrose BA, Lerner DR, Ciceri P, Padilla CM, Yanofsky MF, Schmidt RJ (2000) Molecular and genetic analyses of the silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Mol Cell 5(3):569–579PubMedCrossRefGoogle Scholar
  103. 103.
    Nagasawa N, Miyoshi M, Sano Y et al (2003) SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice. Development 130(4):705–718PubMedCrossRefGoogle Scholar
  104. 104.
    Whipple CJ, Ciceri P, Padilla CM, Ambrose BA, Bandong SL, Schmidt RJ (2004) Conservation of B-class floral homeotic gene function between maize and Arabidopsis. Development 131(24):6083–6091PubMedCrossRefGoogle Scholar
  105. 105.
    Kang HG, Jeon JS, Lee S, An G (1998) Identification of class B and class C floral organ identity genes from rice plants. Plant Mol Biol 38(6):1021–1029PubMedCrossRefGoogle Scholar
  106. 106.
    Yao SG, Ohmori S, Kimizu M, Yoshida H (2008) Unequal genetic redundancy of rice PISTILLATA orthologs, OsMADS2 and OsMADS4, in lodicule and stamen development. Plant Cell Physiol 49(5):853–857PubMedCrossRefGoogle Scholar
  107. 107.
    Xiao H, Tang J, Li Y et al (2009) STAMENLESS 1, encoding a single C2H2 zinc finger protein, regulates floral organ identity in rice. Plant J 59(5):789–801PubMedCrossRefGoogle Scholar
  108. 108.
    Kramer EM, Jaramillo MA, Di Stilio VS (2004) Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in angiosperms. Genetics 166(2):1011–1023PubMedCrossRefGoogle Scholar
  109. 109.
    Zahn LM, Leebens-Mack JH, Arrington JM et al (2006) Conservation and divergence in the AGAMOUS subfamily of MADS-box genes: evidence of independent sub- and neofunctionalization events. Evol Dev 8(1):30–45PubMedCrossRefGoogle Scholar
  110. 110.
    Dreni L, Pilatone A, Yun D et al (2011) Functional analysis of all AGAMOUS subfamily members in rice reveals their roles in reproductive organ identity determination and meristem determinacy. Plant Cell 23(8):2850–2863PubMedCrossRefGoogle Scholar
  111. 111.
    Hu L, Liang W, Yin C et al (2011) Rice MADS3 regulates ROS homeostasis during late anther development. Plant Cell 23(2):515–533PubMedCrossRefGoogle Scholar
  112. 112.
    Yamaguchi T, Lee DY, Miyao A, Hirochika H, An G, Hirano HY (2006) Functional diversification of the two C-class MADS box genes OSMADS3 and OSMADS58 in Oryza sativa. Plant Cell 18(1): 15–28PubMedCrossRefGoogle Scholar
  113. 113.
    Dreni L, Jacchia S, Fornara F et al (2007) The D-lineage MADS-box gene OsMADS13 controls ovule identity in rice. Plant J 52(4):690–699PubMedCrossRefGoogle Scholar
  114. 114.
    Yamaki S, Nagato Y, Kurata N, Nonomura K (2011) Ovule is a lateral organ finally differentiated from the terminating floral meristem in rice. Dev Biol 351(1):208–216PubMedCrossRefGoogle Scholar
  115. 115.
    Prasad K, Sriram P, Kumar CS, Kushalappa K, Vijayraghavan U (2001) Ectopic expression of rice OsMADS1 reveals a role in specifying the lemma and palea, grass floral organs analogous to sepals. Dev Genes Evol 211(6):281–290PubMedCrossRefGoogle Scholar
  116. 116.
    Cui R, Han J, Zhao S et al (2010) Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa). Plant J 61(5):767–781PubMedCrossRefGoogle Scholar
  117. 117.
    Becker A, Theissen G (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol 29(3):464–489PubMedCrossRefGoogle Scholar
  118. 118.
    Theissen G, Becker A, Di Rosa A et al (2000) A short history of MADS-box genes in plants. Plant Mol Biol 42(1):115–149PubMedCrossRefGoogle Scholar
  119. 119.
    Reinheimer R, Kellogg EA (2009) Evolution of AGL6-like MADS box genes in grasses (Poaceae): ovule expression is ancient and palea expression is new. Plant Cell 21(9):2591–2605PubMedCrossRefGoogle Scholar
  120. 120.
    Rijpkema AS, Zethof J, Gerats T, Vandenbussche M (2009) The petunia AGL6 gene has a SEPALLATA-like function in floral patterning. Plant J 60(1):1–9PubMedCrossRefGoogle Scholar
  121. 121.
    Schauer SE, Schluter PM, Baskar R et al (2009) Intronic regulatory elements determine the divergent expression patterns of AGAMOUS-LIKE6 subfamily members in Arabidopsis. Plant J 59(6):987–1000PubMedCrossRefGoogle Scholar
  122. 122.
    Liu B, Chen Z, Song X et al (2007) Oryza sativa dicer-like4 reveals a key role for small interfering RNA silencing in plant development. Plant Cell 19(9):2705–2718PubMedCrossRefGoogle Scholar
  123. 123.
    Sun Q, Zhou DX (2008) Rice jmjC domain-containing gene JMJ706 encodes H3K9 demethylase required for floral organ development. Proc Natl Acad Sci U S A 105(36):13679–13684PubMedCrossRefGoogle Scholar
  124. 124.
    Chang F, Wang Y, Wang S, Ma H (2011) Molecular control of microsporogenesis in Arabidopsis. Curr Opin Plant Biol 14(1):66–73PubMedCrossRefGoogle Scholar
  125. 125.
    Ma H (2005) Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. Annu Rev Plant Biol 56:393–434PubMedCrossRefGoogle Scholar
  126. 126.
    Mercier R, Grelon M (2008) Meiosis in plants: ten years of gene discovery. Cytogenet Genome Res 120(3–4):281–290PubMedCrossRefGoogle Scholar
  127. 127.
    Scott RJ, Spielman M, Dickinson HG (2004) Stamen structure and function. Plant Cell 16(Suppl):S46–60PubMedGoogle Scholar
  128. 128.
    Singh MB, Bhalla PL (2007) Control of male germ-cell development in flowering plants. Bioessays 29(11):1124–1132PubMedCrossRefGoogle Scholar
  129. 129.
    Wilson ZA, Zhang DB (2009) From Arabidopsis to rice: pathways in pollen development. J Exp Bot 60(5):1479–1492PubMedCrossRefGoogle Scholar
  130. 130.
    Zhang D, Luo X, Zhu L (2011) Cytological analysis and genetic control of rice anther development. J Genet Genomics 38(9):379–390PubMedCrossRefGoogle Scholar
  131. 131.
    Fujita M, Horiuchi Y, Ueda Y et al (2010) Rice expression atlas in reproductive development. Plant Cell Physiol 51(12):2060–2081PubMedCrossRefGoogle Scholar
  132. 132.
    Hobo T, Suwabe K, Aya K et al (2008) Various spatiotemporal expression profiles of anther-expressed genes in rice. Plant Cell Physiol 49(10):1417–1428PubMedCrossRefGoogle Scholar
  133. 133.
    Huang MD, Wei FJ, Wu CC, Hsing YI, Huang AH (2009) Analyses of advanced rice anther transcriptomes reveal global tapetum secretory functions and potential proteins for lipid exine formation. Plant Physiol 149(2):694–707PubMedCrossRefGoogle Scholar
  134. 134.
    Jiao Y, Tausta SL, Gandotra N et al (2009) A transcriptome atlas of rice cell types uncovers cellular, functional and developmental hierarchies. Nat Genet 41(2):258–263PubMedCrossRefGoogle Scholar
  135. 135.
    Suwabe K, Suzuki G, Takahashi H et al (2008) Separated transcriptomes of male gametophyte and tapetum in rice: validity of a laser microdissection (LM) microarray. Plant Cell Physiol 49(10):1407–1416PubMedCrossRefGoogle Scholar
  136. 136.
    Tang X, Zhang ZY, Zhang WJ et al (2010) Global gene profiling of laser-captured pollen mother cells indicates molecular pathways and gene subfamilies involved in rice meiosis. Plant Physiol 154(4):1855–1870PubMedCrossRefGoogle Scholar
  137. 137.
    Wang Z, Liang Y, Li C et al (2005) Microarray analysis of gene expression involved in anther development in rice (Oryza sativa L.). Plant Mol Biol 58(5):721–737PubMedCrossRefGoogle Scholar
  138. 138.
    Wei LQ, Xu WY, Deng ZY, Su Z, Xue Y, Wang T (2010) Genome-scale analysis and comparison of gene expression profiles in developing and germinated pollen in Oryza sativa. BMC Genomics 11:338PubMedCrossRefGoogle Scholar
  139. 139.
    Matsui T, Omasa K, Horie T (1999) Mechanism of anther dehiscence in rice (Oryza sativa L.). Ann Bot 84:501–506CrossRefGoogle Scholar
  140. 140.
    Huysmans S, El-Ghazaly G, Smets E (1998) Orbicules in angiosperms: morphology, function, distribution, and relation with tapetum types. Bot Rev 64(3):240–272CrossRefGoogle Scholar
  141. 141.
    Furness C, Rudall P (2001) The tapetum in basal angiosperms: early diversity. Int J Plant Sci 162(2):375–392CrossRefGoogle Scholar
  142. 142.
    Furness CA, Rudall PJ (1998) The tapetum and systematics in monocotyledons. Bot Rev 64:201–239CrossRefGoogle Scholar
  143. 143.
    Wu SS, Platt KA, Ratnayake C, Wang TW, Ting JT, Huang AH (1997) Isolation and characterization of neutral-lipid-containing organelles and globuli-filled plastids from Brassica napus tapetum. Proc Natl Acad Sci U S A 94(23):12711–12716PubMedCrossRefGoogle Scholar
  144. 144.
    Li H, Pinot F, Sauveplane V et al (2010) Cytochrome P450 family member CYP704B2 catalyzes the ω-hydroxylation of fatty acids and is required for anther cutin biosynthesis and pollen exine formation in rice. Plant Cell 22:173–190PubMedCrossRefGoogle Scholar
  145. 145.
    Li H, Zhang D (2010) Biosynthesis of anther cuticle and pollen exine in rice. Plant Signal Behav 5(9):1121–1123PubMedCrossRefGoogle Scholar
  146. 146.
    Nonomura K, Miyoshi K, Eiguchi M et al (2003) The MSP1 gene is necessary to restrict the number of cells entering into male and female sporogenesis and to initiate anther wall formation in rice. Plant Cell 15(8):1728–1739PubMedCrossRefGoogle Scholar
  147. 147.
    Wang Y, Wang YF, Zhang DB (2006) Identification of the rice (Oryza sativa L.) mutant msp1-4 and expression analysis of its UDT1 and GAMYB genes. Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao 32(5):527–534PubMedGoogle Scholar
  148. 148.
    Zhao X, de Palma J, Oane R et al (2008) OsTDL1A binds to the LRR domain of rice receptor kinase MSP1, and is required to limit sporocyte numbers. Plant J 54(3):375–387PubMedCrossRefGoogle Scholar
  149. 149.
    Aya K, Ueguchi-Tanaka M, Kondo M et al (2009) Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB. Plant Cell 21(5):1453–1472PubMedCrossRefGoogle Scholar
  150. 150.
    Kaneko M, Inukai Y, Ueguchi-Tanaka M et al (2004) Loss-of-function mutations of the rice GAMYB gene impair alpha-amylase expression in aleurone and flower development. Plant Cell 16(1):33–44PubMedCrossRefGoogle Scholar
  151. 151.
    Liu Z, Bao W, Liang W, Yin J, Zhang D (2010) Identification of gamyb-4 and analysis of the regulatory role of GAMYB in rice anther development. J Integr Plant Biol 52(7):670–678PubMedCrossRefGoogle Scholar
  152. 152.
    Jung KH, Han MJ, Lee YS et al (2005) Rice Undeveloped Tapetum1 is a major regulator of early tapetum development. Plant Cell 17(10):2705–2722PubMedCrossRefGoogle Scholar
  153. 153.
    Nonomura K, Nakano M, Fukuda T et al (2004) The novel gene HOMOLOGOUS PAIRING ABERRATION IN RICE MEIOSIS1 of rice encodes a putative coiled-coil protein required for homologous chromosome pairing in meiosis. Plant Cell 16(4): 1008–1020PubMedCrossRefGoogle Scholar
  154. 154.
    Nonomura K, Nakano M, Eiguchi M, Suzuki T, Kurata N (2006) PAIR2 is essential for homologous chromosome synapsis in rice meiosis I. J Cell Sci 119(Pt 2):217–225PubMedCrossRefGoogle Scholar
  155. 155.
    Yuan W, Li X, Chang Y et al (2009) Mutation of the rice gene PAIR3 results in lack of bivalent formation in meiosis. Plant J 59(2):303–315PubMedCrossRefGoogle Scholar
  156. 156.
    Nonomura K, Morohoshi A, Nakano M et al (2007) A germ cell specific gene of the ARGONAUTE family is essential for the progression of premeiotic mitosis and meiosis during sporogenesis in rice. Plant Cell 19(8):2583–2594PubMedCrossRefGoogle Scholar
  157. 157.
    Zhang L, Tao J, Wang S, Chong K, Wang T (2006) The rice OsRad21-4, an orthologue of yeast Rec8 protein, is required for efficient meiosis. Plant Mol Biol 60(4):533–554PubMedCrossRefGoogle Scholar
  158. 158.
    Wang M, Wang K, Tang D et al (2010) The central element protein ZEP1 of the synaptonemal complex regulates the number of crossovers during meiosis in rice. Plant Cell 22(2):417–430PubMedCrossRefGoogle Scholar
  159. 159.
    Zhou S, Wang Y, Li W et al (2011) Pollen semi-sterility1 encodes a kinesin-1-like protein important for male meiosis, anther dehiscence, and fertility in rice. Plant Cell 23(1):111–129PubMedCrossRefGoogle Scholar
  160. 160.
    Li N, Zhang DS, Liu HS et al (2006) The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell 18(11):2999–3014PubMedCrossRefGoogle Scholar
  161. 161.
    Zhang DS, Liang WQ, Yuan Z et al (2008) Tapetum degeneration retardation is critical for aliphatic metabolism and gene regulation during rice pollen development. Mol Plant 1(4):599–610PubMedCrossRefGoogle Scholar
  162. 162.
    Li H, Yuan Z, Vizcay-Barrena G et al (2011) PERSISTENT TAPETAL CELL1 encodes a PHD-finger protein that is required for tapetal cell death and pollen development in rice. Plant Physiol 156(2):615–630PubMedCrossRefGoogle Scholar
  163. 163.
    Niu N, Liang W, Yang X, Jin W, Wilson ZA, Hu J, Zhang D (2013) EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice. Nat Commun 4:1445PubMedCrossRefGoogle Scholar
  164. 164.
    Li X, Gao X, Wei Y et al (2011) Rice APOPTOSIS INHIBITOR5 coupled with two DEAD-box adenosine 5'-triphosphate-dependent RNA helicases regulates tapetum degeneration. Plant Cell 23(4):1416–1434PubMedCrossRefGoogle Scholar
  165. 165.
    Jung KH, Han MJ, Lee DY et al (2006) Wax-deficient anther1 is involved in cuticle and wax production in rice anther walls and is required for pollen development. Plant Cell 18(11):3015–3032PubMedCrossRefGoogle Scholar
  166. 166.
    Shi J, Tan H, Yu XH et al (2011) Defective pollen wall is required for anther and microspore development in rice and encodes a Fatty acyl carrier protein reductase. Plant Cell 23(6):2225–2246PubMedCrossRefGoogle Scholar
  167. 167.
    Zhu L, Shi JX, Zhao GC, Zhang DB, Liang WQ (2013) Post-meiotic deficient anther1 (PDA1) encodes an ABC transporter required for the development of anther cuticle and pollen exine in rice. Journal of Plant Biology 56(1):59–68CrossRefGoogle Scholar
  168. 168.
    Zhang D, Liang W, Yin C, Zong J, Gu F (2010) OsC6, encoding a lipid transfer protein, is required for postmeiotic anther development in rice. Plant Physiol 154(1):149–162PubMedCrossRefGoogle Scholar
  169. 169.
    Zhang H, Liang W, Yang X et al (2010) Carbon starved anther encodes a MYB domain protein that regulates sugar partitioning required for rice pollen development. Plant Cell 22(3):672–689PubMedCrossRefGoogle Scholar
  170. 170.
    Zhu QH, Ramm K, Shivakkumar R, Dennis ES, Upadhyaya NM (2004) The ANTHER INDEHISCENCE1 gene encoding a single MYB domain protein is involved in anther development in rice. Plant Physiol 135(3):1514–1525PubMedCrossRefGoogle Scholar
  171. 171.
    Han MJ, Jung KH, Yi G, Lee DY, An G (2006) Rice Immature Pollen 1 (RIP1) is a regulator of late pollen development. Plant Cell Physiol 47(11):1457–1472PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Dabing Zhang
    • 1
  • Zheng Yuan
    • 1
  • Gynheung An
    • 2
  • Ludovico Dreni
    • 3
  • Jianping Hu
    • 4
  • Martin M. Kater
    • 3
  1. 1.School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Crop Biotech InstituteKyung Hee UniversityYonginKorea
  3. 3.Dipartimento di BioscienzeUniversità degli Studi di MilanoMilanItaly
  4. 4.Department of Energy Plant Research LaboratoryMichigan State UniversityEast LansingUSA

Personalised recommendations