Brain Shift and Updated Intraoperative Navigation with Intraoperative MRI

  • Arya NabaviEmail author
  • Heinz Handels


Image-guided navigation provides a valuable adjunct to neurosurgical procedures. However, since the brain is not a rigid body, intraoperative changes, summarized as “brain shift”, represent a major practical and theoretical challenge. Intraoperative imaging, in particular intraoperative MRI to update information on computer-assisted navigation systems, solves the practical issue. However, capturing, characterizing and modelling brain deformation have opened interesting research avenues, which may lead to a more thorough understanding of the biomechanical properties of the brain. Potential applications go beyond surgical simulation. Obtaining data on the viscoelastic properties of the brain may yield valuable information in regard to physiological (e.g. ageing) as well as pathological conditions (reactions to traumatic brain injuries as well as degenerative diseases).

In this chapter, we portray the development of “brain shift” characterization and potential future directions, as well as the development and practical application of updated surgical navigation with intraoperative MRI.


Traumatic Brain Injury Navigation System Brain Shift Traumatic Brain Injury Surface Visualization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Without the motivation and support of the MRT-Teams in Boston and Kiel neither the clinical routine, nor the data sampling for the scientific analyses would have been possible. The work with the “double doughnut” was done from 1998-2000 at the Brigham and Women´s Hospital (under the tutelage of FA. Jolesz, R. Kikinis, P. McL. Black). The 3D Slicer (programmed by D. Gering) was used for navigation and 3D analyses. In Kiel the program was started in 2005 (Chair: H.M. Mehdorn). IGT is a multidisciplinary effort, involving a lot of colleagues who turned friends over the years! The authors extend their gratitude to all of them.


  1. 1.
    Yasargil MG. Microneurosurgery, vol. I. Stuttgart: Georg Thieme Verlag; 1984.Google Scholar
  2. 2.
    Roberts DW, Strohbehn JW, Hatch JF, Murray W, Kettenberger H. A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope. J Neurosurg. 1986;65(4):545–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Watanabe E, Watanabe T, Manaka S, Mayanagi Y, Takakura K. Three-dimensional digitizer (neuronavigator): new equipment for computed tomography-guided stereotaxic surgery. Surg Neurol. 1987;27(6):543–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Nabavi A, Manthei G, Blomer U, Kumpf L, Klinge H, Mehdorn HM. Neuronavigation. Computer-assisted surgery in neurosurgery. Radiologe. 1995;35(9):573–7.PubMedGoogle Scholar
  5. 5.
    Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol. 2006;7(5):392–401.PubMedCrossRefGoogle Scholar
  6. 6.
    Nabavi A, Gering DT, Kacher DF, et al. Surgical navigation in the open MRI. Acta Neurochir Suppl. 2003;85:121–5.PubMedCrossRefGoogle Scholar
  7. 7.
    Jolesz FA, Shtern F. The operating room of the future. Report of the National Cancer Institute Workshop, “imaging-guided stereotactic tumor diagnosis and treatment”. Invest Radiol. 1992;27(4):326–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Jolesz FA. Interventional magnetic resonance imaging, computed tomography, and ultrasound. Acad Radiol. 1995;2 Suppl 2:S124–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Feinsod M. A flask full of jelly: the first in vitro model of concussive head injury–1830. Neurosurgery. 2002;50(2):386–91.PubMedGoogle Scholar
  10. 10.
    Zou H, Schmiedeler JP, Hardy WN. Separating brain motion into rigid body displacement and deformation under low-severity impacts. J Biomech. 2007;40(6):1183–91.PubMedCrossRefGoogle Scholar
  11. 11.
    Hill DL, Maurer Jr CR, Maciunas RJ, Barwise JA, Fitzpatrick JM, Wang MY. Measurement of intraoperative brain surface deformation under a craniotomy. Neurosurgery. 1998;43(3):514–26; discussion 527–18.PubMedCrossRefGoogle Scholar
  12. 12.
    Jodicke A, Deinsberger W, Erbe H, Kriete A, Boker DK. Intraoperative three-dimensional ultrasonography: an approach to register brain shift using multidimensional image processing. Minim Invasive Neurosurg. 1998;41(1):13–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Roberts DW, Hartov A, Kennedy FE, Miga MI, Paulsen KD. Intraoperative brain shift and deformation: a quantitative analysis of cortical displacement in 28 cases. Neurosurgery. 1998;43(4):749–58; discussion 758–60.PubMedCrossRefGoogle Scholar
  14. 14.
    Ganser KA, Dickhaus H, Staubert A, et al. Quantification of brain shift effects in MRI images. Biomed Tech (Berl). 1997;42(Suppl):247–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Nimsky C, Ganslandt O, Cerny S, Hastreiter P, Greiner G, Fahlbusch R. Quantification of, visualization of, and compensation for brain shift using intraoperative magnetic resonance imaging. Neurosurgery. 2000;47(5):1070–9; discussion 1079–80.PubMedCrossRefGoogle Scholar
  16. 16.
    Nabavi A, Black PM, Gering DT, et al. Serial intraoperative magnetic resonance imaging of brain shift. Neurosurgery. 2001;48(4):787–97; discussion 797–88.PubMedGoogle Scholar
  17. 17.
    Hata N, Nabavi A, Wells 3rd WM, et al. Three-dimensional optical flow method for measurement of volumetric brain deformation from intraoperative MR images. J Comput Assist Tomogr. 2000;24(4):531–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Ferrant M, Nabavi A, Macq B, Jolesz FA, Kikinis R, Warfield SK. Registration of 3-D intraoperative MR images of the brain using a finite-element biomechanical model. IEEE Trans Med Imaging. 2001;20(12):1384–97.PubMedCrossRefGoogle Scholar
  19. 19.
    Skrinjar O, Nabavi A, Duncan J. Model-driven brain shift compensation. Med Image Anal. 2002;6(4):361–73.PubMedCrossRefGoogle Scholar
  20. 20.
    Miller K. Non-linear computer simulation of brain deformation. Biomed Sci Instrum. 2001;37:179–84.PubMedGoogle Scholar
  21. 21.
    Hastreiter P, Rezk-Salama C, Soza G, et al. Strategies for brain shift evaluation. Med Image Anal. 2004;8(4):447–64.PubMedCrossRefGoogle Scholar
  22. 22.
    Clatz O, Delingette H, Talos IF, et al. Robust nonrigid registration to capture brain shift from intraoperative MRI. IEEE Trans Med Imaging. 2005;24(11):1417–27.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Wittek A, Kikinis R, Warfield SK, Miller K. Brain shift computation using a fully nonlinear biomechanical model. Med Image Comput Comput Assist Interv. 2005;8(Pt 2):583–90.PubMedGoogle Scholar
  24. 24.
    Miga MI, Roberts DW, Kennedy FE, et al. Modeling of retraction and resection for intraoperative updating of images. Neurosurgery. 2001;49(1):75–84; discussion 84–75.PubMedGoogle Scholar
  25. 25.
    Roberts DW, Miga MI, Hartov A, et al. Intraoperatively updated neuroimaging using brain modeling and sparse data. Neurosurgery. 1999;45(5):1199–206; discussion 1206–197.PubMedCrossRefGoogle Scholar
  26. 26.
    Wittek A, Miller K, Kikinis R, Warfield SK. Patient-specific model of brain deformation: application to medical image registration. J Biomech. 2007;40(4):919–29.PubMedCrossRefGoogle Scholar
  27. 27.
    Archip N, Clatz O, Whalen S, et al. Non-rigid alignment of pre-operative MRI, fMRI, and DT-MRI with intra-operative MRI for enhanced visualization and navigation in image-guided neurosurgery. Neuroimage. 2007;35(2):609–24.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Dumpuri P, Thompson RC, Cao A, et al. A fast and efficient method to compensate for brain shift for tumor resection therapies measured between preoperative and postoperative tomograms. IEEE Trans Biomed Eng. 2010;57(6):1285–96.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Farber M, Hummel F, Gerloff C, Handels H. Virtual reality simulator for the training of lumbar punctures. Methods Inf Med. 2009;48(5):493–501.PubMedCrossRefGoogle Scholar
  30. 30.
    Chen I, Coffey AM, Ding S, et al. Intraoperative brain shift compensation: accounting for dural septa. IEEE Trans Biomed Eng. 2011;58(3):499–508.PubMedCrossRefGoogle Scholar
  31. 31.
    Reinertsen I, Collins DL. A realistic phantom for brain-shift simulations. Med Phys. 2006;33(9):3234–40.PubMedCrossRefGoogle Scholar
  32. 32.
    Handels H, Ehrhardt J. Medical image computing for computer-supported diagnostics and therapy. Advances and perspectives. Methods Inf Med. 2009;48(1):11–7.PubMedGoogle Scholar
  33. 33.
    Muthupillai R, Lomas DJ, Rossman PJ, Greenleaf JF, Manduca A, Ehman RL. Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science. 1995;269(5232):1854–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Green MA, Bilston LE, Sinkus R. In vivo brain viscoelastic properties measured by magnetic resonance elastography. NMR Biomed. 2008;21(7):755–64.PubMedCrossRefGoogle Scholar
  35. 35.
    Koivukangas J, Louhisalmi Y, Alakuijala J, Oikarinen J. Ultrasound-controlled neuronavigator-guided brain surgery. J Neurosurg. 1993;79(1):36–42.PubMedCrossRefGoogle Scholar
  36. 36.
    Unsgaard G, Ommedal S, Muller T, Gronningsaeter A, Nagelhus Hernes TA. Neuronavigation by intraoperative three-dimensional ultrasound: initial experience during brain tumor resection. Neurosurgery. 2002;50(4):804–12; discussion 812.PubMedCrossRefGoogle Scholar
  37. 37.
    Shalit MN, Israeli Y, Matz S, Cohen ML. Experience with intraoperative CT scanning in brain tumors. Surg Neurol. 1982;17(5):376–82.PubMedCrossRefGoogle Scholar
  38. 38.
    Uhl E, Zausinger S, Morhard D, et al. Intraoperative computed tomography with integrated navigation system in a multidisciplinary operating suite. Neurosurgery. 2009;64(5 Suppl 2):231–9; discussion 239–40.PubMedGoogle Scholar
  39. 39.
    Schenck JF, Jolesz FA, Roemer PB, et al. Superconducting open-configuration MR imaging system for image-guided therapy. Radiology. 1995;195(3):805–14.PubMedGoogle Scholar
  40. 40.
    Jolesz FA. Future perspectives in intraoperative imaging. Acta Neurochir Suppl. 2003;85:7–13.PubMedCrossRefGoogle Scholar
  41. 41.
    Wirtz CR, Bonsanto MM, Knauth M, et al. Intraoperative magnetic resonance imaging to update interactive navigation in neurosurgery: method and preliminary experience. Comput Aided Surg. 1997;2(3–4):172–9.PubMedGoogle Scholar
  42. 42.
    Black PM, Alexander 3rd E, Martin C, et al. Craniotomy for tumor treatment in an intraoperative magnetic resonance imaging unit. Neurosurgery. 1999;45(3):423–31; discussion 431–23.PubMedCrossRefGoogle Scholar
  43. 43.
    Nabavi A, Mamisch CT, Gering DT, et al. Image-guided therapy and intraoperative MRI in neurosurgery. Minim Invasive Ther Allied Technol. 2000;9(3–4):277–86.PubMedGoogle Scholar
  44. 44.
    Samset E, Hirschberg H. Neuronavigation in intraoperative MRI. Comput Aided Surg. 1999;4(4):200–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Gering DT, Nabavi A, Kikinis R, et al. An integrated visualization system for surgical planning and guidance using image fusion and an open MR. J Magn Reson Imaging. 2001;13(6):967–75.PubMedCrossRefGoogle Scholar
  46. 46.
    Jolesz FA. Intraoperative imaging in neurosurgery: where will the future take us? Acta Neurochir Suppl. 2011;109:21–5.PubMedCrossRefGoogle Scholar
  47. 47.
    Nabavi A, Stark AM, Doerner L, Mehdorn MH. Surgical navigation with intraoperative imaging: special OR concepts. In: Quinones-Hinojosa A, Schmidek H, Roberts D, editors. Schmidek and sweet’s operative neurosurgical techniques: indications, methods and results. Philadelphia: Elsevier. 2012;1:12–20Google Scholar
  48. 48.
    Jolesz FA, Nabavi A, Kikinis R. Integration of interventional MRI with computer-assisted surgery. J Magn Reson Imaging. 2001;13(1):69–77.PubMedCrossRefGoogle Scholar
  49. 49.
    Rachinger J, von Keller B, Ganslandt O, Fahlbusch R, Nimsky C. Application accuracy of automatic registration in frameless stereotaxy. Stereotact Funct Neurosurg. 2006;84(2–3):109–17.PubMedCrossRefGoogle Scholar
  50. 50.
    Krueger S, Wolff S, Schmitgen A, et al. Fast and accurate automatic registration for MR-guided procedures using active microcoils. IEEE Trans Med Imaging. 2007;26(3):385–92.PubMedCrossRefGoogle Scholar
  51. 51.
    Nabavi A, Dorner L, Stark AM, Mehdorn HM. Intraoperative MRI with 1.5 Tesla in neurosurgery. Neurosurg Clin N Am. 2009;20(2):163–71.PubMedCrossRefGoogle Scholar
  52. 52.
    Nabavi A, Thurm H, Zountsas B, et al. Five-aminolevulinic acid for fluorescence-guided resection of recurrent malignant gliomas: a phase ii study. Neurosurgery. 2009;65(6):1070–6; discussion 1076–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Nabavi A, Goebel S, Doerner L, Warneke N, Ulmer S, Mehdorn M. Awake craniotomy and intraoperative magnetic resonance imaging: patient selection, preparation, and technique. Top Magn Reson Imaging. 2009;19(4):191–6.PubMedCrossRefGoogle Scholar
  54. 54.
    Nimsky C, von Keller B, Schlaffer S, et al. Updating navigation with intraoperative image data. Top Magn Reson Imaging. 2009;19(4):197–204.PubMedCrossRefGoogle Scholar
  55. 55.
    Miga MI, Paulsen KD, Lemery JM, et al. Model-updated image guidance: initial clinical experiences with gravity-induced brain deformation. IEEE Trans Med Imaging. 1999;18(10):866–74.PubMedCrossRefGoogle Scholar
  56. 56.
    Ji S, Hartov A, Roberts D, Paulsen K. Data assimilation using a gradient descent method for estimation of intraoperative brain deformation. Med Image Anal. 2009;13(5):744–56.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Clinic of NeurosurgeryUniversity Hospital Schleswig-Holstein, Campus KielKielGermany
  2. 2.Institute of Medical InformaticsUniversity Hospital Schleswig-Holstein, University of LübeckLübeckGermany

Personalised recommendations