Advertisement

Space-Clamp Problems When Voltage Clamping Branched Neurons With Intracellular Microelectrodes

  • Wilfrid Rall
  • Idan Segev

Abstract

The dendritic surface area of a neuron may be 10, 20, or even 100 times greater than the surface area of the neuron soma. This dendritic membrane provides a large distributed capacity that is electrically coupled to the soma by various cable distances along the branched core conductor. When a voltage clamp is applied across the soma membrane, the dendritic membrane is neither space clamped nor voltage clamped, except for the special case of very short dendritic trees.

Keywords

Synaptic Input Voltage Clamp Impulse Response Function Dendritic Tree Synaptic Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Araki, T., and C. A. Terzuolo. Membrane currents in spinal motoneurones associated with the action potential and synaptic activity. J. Neurophysiol. 25: 772–789, 1962.PubMedGoogle Scholar
  2. 2.
    Barrett, J. N., and W. E. Crill. Specific membrane properties of cat motoneurones. J. Physiol. London 239: 301–324, 1974.PubMedGoogle Scholar
  3. 3.
    Barrett, J. N., and W. E. Crill. Influences of dendritic location and membrane properties on the effectiveness of synapses on cat motoneurones. J. Physiol. London 239: 325345, 1974.Google Scholar
  4. 4.
    Barrett, J. N., and W. E. Crill. Voltage clamp of cat motoneurone somata: properties of the fast inward current. J. Physiol. London 304: 231–249, 1980.PubMedGoogle Scholar
  5. 5.
    Brown, T. H., and D. Johnston. Voltage-clamp analysis of mossy fiber synaptic input to hippocampal neurons. J. Neurophysiol. 50: 487–507, 1983.PubMedGoogle Scholar
  6. 6.
    Butz, E. G., and J. D. Cowan. Transient potentials in dendritic systems of arbitrary geometry. Biophys. J. 14: 661–689, 1974.PubMedCrossRefGoogle Scholar
  7. 7.
    Calvin, W. H. Dendritic synapses and reversal potentials: theoretical implications of the view from the soma. Exp. Neural. 24: 248–264, 1969.CrossRefGoogle Scholar
  8. 8.
    Carnevale, N. T., and D. Johnston. Electrophysiological characterization of remote chemical synapses. J. Neurophysiol. 47: 606–621, 1982.PubMedGoogle Scholar
  9. 9.
    Carslaw, H. S., and J. C. Jaeger. Conduction of Heat in Solids. London: Oxford Univ. Press, 1959.Google Scholar
  10. 10.
    Finkel, A. S., and S. J. Redman. The synaptic current evoked in cat spinal motoneurones by impulses in single group Ia axons. J. Physiol. London 342: 615–632, 1983.PubMedGoogle Scholar
  11. 11.
    Frank, K., M. G. F. Fuortes, and P. G. Nelson. Voltage clamp of motoneuron soma. Science 130: 38–39, 1959.PubMedCrossRefGoogle Scholar
  12. 12.
    Horwitz, B. An analytical method for investigating transient potentials in neurons with branching dendritic trees. Biophys. J. 36: 155–192, 1981.PubMedCrossRefGoogle Scholar
  13. 13.
    Horwitz, B. Unequal diameters and their effects on time varying voltages in branched neurons. Biophys. J. 41: 51–66, 1983.PubMedCrossRefGoogle Scholar
  14. 14.
    Jack, J. J. B., D. Noble, and R. W. Tsien. Electric Current Flow in Excitable Cells. London: Oxford Univ. Press, 1975.Google Scholar
  15. 15.
    Jack, J. J. B., and S. J. Redman. An electrical description of the motoneurone and its application to the analysis of synaptic potentials. J. Physiol. London 215: 321–352, 1971.Google Scholar
  16. 16.
    Johnston, D., and T. H. Brown. Interpretation of voltage-clamp measurements in hippocampal neurons. J. Neurophysiol. 50: 464–486, 1983.PubMedGoogle Scholar
  17. 17.
    Joyner, R. W., J. W. Moore, and F. Ramon. Axon voltage-clamp simulations. III. Postsynaptic region. Biophys. J. 15: 37–54, 1975.Google Scholar
  18. 18.
    Perkel, D. H., and B. Mulloney. Electrotonic properties of neurons: steady state compartmental model. J. Neurophysiol. 41: 621–639, 1978.PubMedGoogle Scholar
  19. 19.
    Rall, W. Branching dendritic trees and motoneuron membrane resistivity. Exp. Neurol. 1: 491–527, 1959.PubMedCrossRefGoogle Scholar
  20. 20.
    Rall, W. Membrane potential transients and membrane time constant of motoneurons. Exp. Neurol. 2: 503–532, 1960.PubMedCrossRefGoogle Scholar
  21. 21.
    Rall, W. Theory of physiological properties of dendrites. Ann. NYAcad. Sci. 96: 1071 1092, 1962.Google Scholar
  22. 22.
    Rall, W. Theoretical significance of dendritic trees for neuronal input-output relations. In: Neural Theory and Modeling, edited by R. Reiss. Stanford, CA: Stanford Univ. Press, 1964, p. 73–97.Google Scholar
  23. 23.
    Rall, W. Distinguishing theoretical synaptic potentials computed for different somadendritic distributions of synaptic input. J. Neurophysiol. 30: 1138–1168, 1967.PubMedGoogle Scholar
  24. 24.
    Rall, W. Time constants and electrotonic length of membrane cylinders and neurons. Biophys. J. 9: 1483–1508, 1969.PubMedCrossRefGoogle Scholar
  25. 25.
    Rall, W. Core conductor theory and cable properties of neurons. In: Handbook of Physiology. The Nervous System. Cellular Biology of Neurons, edited by J. M. Brookhart and V. B. Mountcastle. Bethesda, MD: Am. Physiol. Soc., 1977, vol. 1, pt. 1, chapt. 3, p. 39–97.Google Scholar
  26. 26.
    Rall, W., R. E. Burke, T. G. Smith, P. G. Nelson, and K. Frank. Dendritic location of synapses and possible mechanisms for the monosynaptic EPSP in motoneurons. J. Neurophysiol. 30: 1169–1193, 1967.PubMedGoogle Scholar
  27. 27.
    Rall, W., and J. Rinzel. Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. Biophys. J. 13: 648–688, 1973.PubMedCrossRefGoogle Scholar
  28. 28.
    Redman, S. J. The attenuation of passively propagating dendritic potentials in a motoneurone cable model. J. Physiol. London 234: 637–664, 1973.PubMedGoogle Scholar
  29. 29.
    Rinzel, J., and W. Rall. Transient response in a dendritic neuron model for current injected at one branch. Biophys. J. 14: 759–790, 1974.PubMedCrossRefGoogle Scholar
  30. 30.
    Selverston, A. I., D. F. Russell, J. P. Miller, and D. G. King. The stomatogastric nervous system: structure and function of a small neural network. Prog. Neurobiol. 7: 215–290, 1976.PubMedCrossRefGoogle Scholar
  31. 31.
    Turner, D. A., and P. A. Schwartzkroin. Steady-state electrotonic analysis of intracellularly stained hippocampal neurons. J. Neurophysiol. 44: 184–199, 1980.PubMedGoogle Scholar

Copyright information

© American Physiological Society 1985

Authors and Affiliations

  • Wilfrid Rall
    • 1
  • Idan Segev
    • 1
  1. 1.Mathematical Research BranchNational Institute of Arthritis, Diabetes, Digestive and Kidney DiseasesBethesdaUSA

Personalised recommendations