Design of Neuromorphic Architectures with Memristors

  • Dhireesha Kudithipudi
  • Cory Merkel
  • Mike Soltiz
  • Garrett S. Rose
  • Robinson E. Pino
Chapter
Part of the Advances in Information Security book series (ADIS, volume 55)

Abstract

Next-generation high-performance computing processors have a pressing need to expand their computation capabilities to support massively parallel applications. Moreover, conventional Von Neumann based architectures cannot meet these complex computational demands. Neuromorphic architectures, which improve the efficiency and robustness of complex computations by emulating the behavior of biological processes in hardware, offer a viable alternative solution. In this chapter, we discuss the design criteria and challenges to realize such architectures using emerging memristor technology. In particular, the memristor models, synapse circuits, fundamental processing units (neural logic blocks) for the neuromorphic architectures, and hybrid CMOS/memristor neural network (CMHNN) topologies using supervised learning will be presented for different benchmarks.

References

  1. 1.
    C. Mead, Neuromorphic electronic systems. Proc. IEEE 78(10), 1629–1636 (1990)CrossRefGoogle Scholar
  2. 2.
    R. Cattell, A. Parker, Challenges for brain emulation: why is it so difficult? Nat. Intell. 1(3), 17–31 (2012)Google Scholar
  3. 3.
    I.E. Ebong, P. Mazumder, CMOS and memristor-based neural network design for position detection. Proc. IEEE 100(6), 2050–2060 (2012)CrossRefGoogle Scholar
  4. 4.
    L. Chua, Resistance switching memories are memristors. Appl. Phys. A 102(4), 765–783 (2011)CrossRefGoogle Scholar
  5. 5.
    C. E. Merkel, D. Kudithipudi. Towards thermal profiling in CMOS/memristor hybrid RRAM architectures, in International Conference on VLSI Design, 2012, pp. 167–172Google Scholar
  6. 6.
    R. Waser, R. Dittmann, G. Staikov, K. Szot, Redox-based resistive switching memories—nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21(25–26), 2632–2663 (2009)CrossRefGoogle Scholar
  7. 7.
    S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder, W. Lu, Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10(4), 1297–1301 (2010)CrossRefGoogle Scholar
  8. 8.
    N.R. McDonald, S.M. Bishop, B.D. Briggs, J.E.V. Nostrand, N.C. Cady, Influence of the plasma oxidation power on the switching properties of al/cuxo/cu memristive devices. Solid-State Electron. 78, 46–50 (2012)CrossRefGoogle Scholar
  9. 9.
    K. Cheng, D.B. Strukov. 3D CMOS-memristor hybrid circuits: devices, integration, architecture, and applications, ACM International Symposium on Physical Design, 33–40, 2012Google Scholar
  10. 10.
    A. Afifi, A. Ayatollahi, F. Raissi. Implementation of biologically plausible spiking neural network models on the memristor crossbar-based cmos/nano circuits, in Circuit Theory and Design, 2009. European Conference on ECCTD 2009, Aug. 2009, pp. 563–566Google Scholar
  11. 11.
    M. Kulkarni, G. Howard, E. Gale, L. Bull, B. de Lacy Costello, A. Adamatzky. Towards evolving spiking networks with memristive synapses, in IEEE Symposium on Artificial Life, ser. ALIFE’11, April 2011, pp. 14–21Google Scholar
  12. 12.
    G. Rose, R. Pino, Q. Wu. A low-power memristive neuromorphic circuit utilizing a global/local training mechanism, in The 2011 International Joint Conference on Neural Networks (IJCNN), August 2011, pp. 2080–2086Google Scholar
  13. 13.
    J.A. Perez-Carrasco, C. Zamarreno-Ramos, T. Serrano-Gotarredona, B. Linares-Barranco. On neuromorphic spiking architectures for asynchronous STDP memristive systems, in International Conference on Circuits and Systems, 2010, pp. 77–80Google Scholar
  14. 14.
    M. Laiho, E. Lehtonen. Cellular nanoscale network cell with memristors for local implication logic and synapses, in Proceedings of 2010 IEEE International Symposium on Circuits and Systems, May 2010, pp. 2051–2054Google Scholar
  15. 15.
    K.D. Cantley, A. Subramaniam, H.J. Stiegler, R.A. Chapman, E.M. Vogel. Hebbian learning in spiking neural networks with nanocrystalline silicon TFTs and memristive synapses, 10(5), 1066–1073 (2011)Google Scholar
  16. 16.
    H. Kim, M.P. Sah, C. Yang, T. Roska, L.O. Chua, Neural synaptic weighting with a pulse-based memristor circuit. IEEE Trans. Circuit Theory 59(1), 148–158 (2012)MathSciNetGoogle Scholar
  17. 17.
    H. Kim, M.P. Sah, C. Yang, T. Roska, L.O. Chua, Memristor bridge synapses. Proc. IEEE 100(6), 2061–2070 (2012)CrossRefGoogle Scholar
  18. 18.
    B. Liu, Y. Chen, B. Wysocki, T. Huang, The circuit realization of a neuromorphic computing system with memristor-based synapse design, in Neural Information Processing, B. Liu, Y. Chen, B. Wysocki, and T. Huang, (Eds) Springer Berlin Heidelberg, 1, 357–365 (2012)Google Scholar
  19. 19.
    J. Rajendran, H. Manem, R. Karri, G.S. Rose, An energy-efficient memristive threshold logic circuit. IEEE Trans. Comput. 61(4), 474–487 (2012)MathSciNetCrossRefGoogle Scholar
  20. 20.
    D. Chabi, W. Zhao, D. Querlioz, J. Klein. Robust neural logic block (NLB) based on memristor crossbar array, in Symposium A Quarterly Journal in Modern Foreign Literatures, IEEE/ACM International Symposium on Nanoscale Architectures, 2011, 137–143Google Scholar
  21. 21.
    A. J. Maren, Craig T. Harston, Robert M. Pap. Handbook of Neural Computing Applications (Academic Press, San Diego, 1990)Google Scholar
  22. 22.
    J. Borghetti, Z. Li, J. Straznicky, X. Li, D.A.A. Ohlberg, W. Wu, D.R. Stewart, R.S. Williams. A hybrid nanomemristor/transistor logic circuit capable of self-programming. Proc. Natl. Acad. Sci. USA 106(6), 1699–703 (2009)Google Scholar
  23. 23.
    J. Rajendran, H. Manem, R. Karri, and G. S. Rose, Memristor based programmable threshold logic array, in IEEE/ACM International Symposium on Nanoscale Architectures, Anaheim, CA, June 2010Google Scholar
  24. 24.
    M. Soltiz, C. Merkel, D. Kudithipudi. RRAM-based adaptive neural logic block for implementing non-linearly separable functions in a single layer, in Nanoarch, 2012Google Scholar
  25. 25.
    F. Rosenblatt, The Perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65(6), 386–408 (1958)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Mike Soltiz, Dhireesha Kudithipudi, Cory Merkel, Garrett S. Rose, Robinson E. Pino, Memristor-based neural logic blocks for non-linearly separable functions, IEEE Transactions on Computers, 28 March 2013. IEEE computer Society Digital Library. IEEE Computer Society, <http://doi.ieeecomputersociety.org/10.1109/TC.2013.75>Google Scholar
  27. 27.
    B. Schrauwen, D. Verstraeten, J.V. Campenhout. An overview of reservoir computing: theory, applications and implementations, in Proceedings of the 15th European Symposium on Artificial Neural Networks, 2007, pp. 471–482Google Scholar
  28. 28.
    H. Jaeger. The echo state approach to analysing and training recurrent neural networks, GMD-German National Research Institute for Computer Science, GMD Report 148, 2001Google Scholar
  29. 29.
    W. Maass, T. Natschläger, H. Markram. Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)Google Scholar
  30. 30.
    M. S. Kulkarni, C. Teuscher. Memristor-based reservoir computing, in IEEE/ACM International Symposium on Nanoscale Architectures, ser. NANOARCH’12, 2012, pp. 226–232Google Scholar
  31. 31.
    M. R. G. Meireles, P. E. M. Almeida, M. G. Simões. A comprehensive review for industrial applicability of artificial neural networks. IEEE Transactions on Industrial Electronics, 50(3), 585–601 (2003)Google Scholar
  32. 32.
    David A. Drachman. Do we have brain to spare? Neurology 64(12), 2004–2005 (2005) Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Dhireesha Kudithipudi
    • 1
  • Cory Merkel
    • 1
  • Mike Soltiz
    • 1
  • Garrett S. Rose
    • 2
  • Robinson E. Pino
    • 3
  1. 1.NanoComputing Research Lab, Department of Computer EngineeringRochester Institute of TechnologyRochesterUSA
  2. 2.Information Directorate, Air Force Research LaboratoryRomeUSA
  3. 3.ICF InternationalBaltimoreUSA

Personalised recommendations