Advertisement

Lipoprotein Subclasses and Cardiovascular Disease Risk in Insulin-Resistant Diabetes

  • Michael CobbleEmail author
  • Patrick D. Mize
  • Eliot A. Brinton
Chapter
Part of the Contemporary Diabetes book series (CDI)

Abstract

Insulin resistance, diabetes mellitus, and the metabolic syndrome are frequently associated with high plasma concentrations of triglyceride-rich lipoproteins (very low-density lipoproteins (VLDL) and intermediate-density lipoproteins (IDL)); an excess of small, dense low-density lipoprotein (LDL) particles; reductions in larger, more buoyant LDL subclasses; and lower levels of high-density lipoprotein (HDL) particles. This multifaceted pro-atherogenic dyslipidemia appears to be caused in part by the excess of triglyceride (TG)-rich lipoproteins in the plasma, and it predicts a higher risk of cardiovascular disease (CVD)-related events. The standard lipid panel (consisting of TG, total cholesterol, LDL-C, and HDL-C) is performed using automated chemistry analyzers, with LDL-C being calculated by the Friedewald equation. However, the standard lipid panel fails to identify many lipoprotein abnormalities that contribute to elevated CVD event risk. Advanced lipid profiles, employing gel electrophoresis (GGE), nuclear magnetic resonance (NMR), and density gradient ultracentrifugation (DGU), measure lipoprotein parameters beyond the standard lipid panel. These parameters, including lipoprotein subclass levels, provide more comprehensive assessment of dyslipidemias, which may help customize treatment strategies based on the patient’s particular dyslipidemic profile. Measurement of advanced lipid panels in many recent clinical trials and observational studies has explored the strengths and weaknesses of each methodology. These data provide evidence that more detailed lipoprotein information in general, and lipoprotein subclass profiles in particular, may help predict CVD risk. The so-called atherogenic dyslipidemia, often seen in patients with diabetes and prediabetes, is identified in the standard lipid panel by high levels of TG and non-high-density lipoprotein cholesterol (non-HDL-C) and low HDL-cholesterol (HDL-C). More comprehensive lipid testing helps further characterize atherogenic dyslipidemia. Specifically, identification of increased levels of small, dense LDL particles and of remnant lipoproteins may be helpful in characterizing this dyslipidemia since these particles appear to be especially atherogenic.

Keywords

Cholesteryl Ester Transfer Protein Density Gradient Ultracentrifugation Lipoprotein Subclass Lipoprotein Subclass Profile Standard Lipid Panel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Alabakovska SB, Labudovic DD, Tosheska KN, Spiroski MZ, Todorova BB. Low density lipoprotein subclass distribution in children with diabetes mellitus. Bratisl Lek Listy. 2008;109:155–9.PubMedGoogle Scholar
  2. 2.
    Ala-Korpela M, Lankinen N, Salminen A, Suna T, Soininen P, Laatikainen R, Ingman P, Jauhiainen M, Taskinen M, Héberger K, Kaski K. The inherent accuracy of 1H NMR spectroscopy to quantify plasma lipoproteins is subclass dependent. Atherosclerosis. 2007;190:352–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Amarenco P, Labreuche J, Lavallée P, Touboul P-J. Statins in stroke prevention and carotid atherosclerosis: systematic review and up-to-date meta-analysis. Stroke. 2004;35:2902–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Austin MA, Brunzell JD, Fitch WL, Krauss RM. Inheritance of low density lipoprotein subclass patterns in familial combined hyperlipidemia. Arterioscler Thromb Vasc Biol. 1990;10:520–30.CrossRefGoogle Scholar
  5. 5.
    Austin MA, King MC, Vranizan KM, Krauss RM. Atherogenic lipoprotein phenotype. A proposed genetic marker for coronary heart disease risk. Circulation. 1990;82:495–506.PubMedCrossRefGoogle Scholar
  6. 6.
    Austin MA, Mykkänen L, Kuusisto J, Edwards KL, Nelson C, Haffner SM, Pyörälä K, Laakso M. Prospective study of small LDLs as a risk factor for non–insulin dependent diabetes mellitus in elderly men and women. Circulation. 1995;92:1770–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Bachorick PS, Ross JW. National Cholesterol Education Program recommendations for measurement of low-density lipoprotein cholesterol: executive summary. Clin Chem. 1995;41:1414–20.Google Scholar
  8. 8.
    Bakogianni MC, Kalofoutis CA, Skenderi KI, Kalofoutis AT. Clinical evaluation of plasma high-density lipoprotein subfractions (HDL2, HDL3) in non-insulin-dependent diabetics with coronary artery disease. J Diabetes Complications. 2001;15:265–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Ballantyne C, Gleim G, Liu N, et al. Effects of coadministered extended-release niacin/laropiprant and simvastatin on lipoprotein subclasses in patients with dyslipidemia. J Clin Lipidol. 2012;6(3):235–43.PubMedCrossRefGoogle Scholar
  10. 10.
    Blake GJ, Otvos JD, Rifai N, Ridker PM. LDL particle concentration and size as determined by NMR spectroscopy as predictors of cardiovascular disease in women. Circulation. 2002;106:1930–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Blanche PJ, Gong EL, Forte TM, Nichols AV. Characterization of human high density lipoproteins by gradient gel electrophoresis. Biochim Biophys Acta. 1981;665:408–19.PubMedCrossRefGoogle Scholar
  12. 12.
    Boumaiza I, Omezzine A, Rejeb J, et al. Apolipoprotein B and non-high-density lipoprotein cholesterol are better risk markers for coronary artery disease than low-density lipoprotein cholesterol in hypertriglyceridemic metabolic syndrome patients. Metab Syndr Relat Disord. 2010;8: 515–22.PubMedCrossRefGoogle Scholar
  13. 13.
    Brunzell JD, Davidson M, Furberg CD, Goldberg RB, Howard BV, Stein JH, Witztum JL. Lipoprotein management in patients with cardiometabolic risk: consensus statement from the American Diabetes Association and the American College of Cardiology Foundation. Diabetes Care. 2008;31:811–22.PubMedCrossRefGoogle Scholar
  14. 14.
    Campbell SC, Moffatt RJ, Kushnick MR. Continuous and intermittent walking alters HDL(2)-C and LCATa. Atherosclerosis. 2011;218:524–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Catapano AL, Reiner Z, De Backer G, Graham I, Taskinen M, Wiklund O, Agewall S, Alegria E, Chapman MJ, Durrington P, Erdine S, Halcox J, Hobbs R, Kjekshus J, Filardi PP, Riccardi G, Storey RF, Wood D. ESC/EAS guidelines for the management of dyslipidaemias: The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Atherosclerosis. 2011;217S:S1–44.Google Scholar
  16. 16.
    Chainani-Wu N, Weidner G, Purnell DM, Frenda S, Merritt-Worden T, Pischke C, Campo R, Kemp C, Kersh ES, Ornish D. Changes in emerging cardiac biomarkers after an intensive lifestyle intervention. Am J Cardiol. 2011;108:498–507.PubMedCrossRefGoogle Scholar
  17. 17.
    Chapman MJ, Laplaud PM, Luc G, Forgez P, Bruckert E, Goulinet S, Lagrange D. Further resolution of the low density lipoprotein spectrum in normal human plasma: physicochemical characteristics of discrete subspecies separated by density gradient ultracentrifugation. J Lipid Res. 1988;29:442–58.PubMedGoogle Scholar
  18. 18.
    Chilton R, Toth PP, Ramirez G, Cobble M, Walsh B, Chiquette E. Treatment with exenatide BID and QW for 30 weeks was associated with favorable lipid subclass changes. Diabetologia. 2011;54 Suppl 1:P799. Accessed Jan 26, 2012 at http://www.abstractsonline.com/Plan/ViewAbstract.aspx?sKey=04f097f3-144b-4788-a3ee-15f397f53c9f&cKey=053cc9fd-fe9b-4593-8746-594a8cf83802&mKey=%7bBAFB2746-B0DD-4110-8588-E385FAF957B7%7d.Google Scholar
  19. 19.
    Chironi G, Simon A, Gariepy J, Balice M, Del-Pino M, Levenson J. Differential associations of statin and fibrate treatment with carotid arterial remodeling. Am J Hypertens. 2005;18:1476–81.PubMedCrossRefGoogle Scholar
  20. 20.
    Chu JW, Abbasi F, Kulkarni KR, Lamendola C, McLaughlin TL, Scalisi JN, Reaven GM. Multiple lipoprotein abnormalities associated with insulin resistance in healthy volunteers are Identified by the vertical auto profile-II methodology. Clin Chem. 2003;49:1014–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Chung BH, Wilkinson T, Geer JC, Segrest JP. Preparative and quantitative isolation of plasma lipoproteins: rapid, single discontinuous density gradient ultracentrifugation in a vertical rotor. J Lipid Res. 1980;21:284–91.PubMedGoogle Scholar
  22. 22.
    Chung BH, Segrest PJ, Cone JT, et al. High resolution plasma lipoprotein cholesterol profiles by a rapid, high volume semi-automated method. J Lipid Res. 1981;22:1003–14.PubMedGoogle Scholar
  23. 23.
    Colhoun HM, Otvos JD, Rubens MB, Taskinen MR, Underwood SR, Fuller JH. Lipoprotein subclasses and particle sizes and their relationship with coronary artery calcification in men and women with and without type 1 diabetes. Diabetes. 2002;51:1949–56.PubMedCrossRefGoogle Scholar
  24. 24.
    Contois JH, McConnell JP, Sethi A, Csako G, Devarag S, Hoefner DM, Warnick GR. Apolipoprotein B and cardiovascular disease risk: position statement from the AACC lipoproteins and vascular diseases division working group on best practices. Clin Chem. 2009;55:407–19.PubMedCrossRefGoogle Scholar
  25. 25.
    Cromwell WC, Otvos JD, Keyes MJ, et al. LDL particle number and risk of future cardiovascular disease in the Framingham Offspring Study - implications for LDL management. J Clin Lipidol. 2007;1: 583–92.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Cui Y, Blumenthal RS, Flaws JA, et al. Non-high-density lipoprotein cholesterol level as a predictor of cardiovascular disease mortality. Arch Intern Med. 2001;161:1413–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Deeg MA, Buse JB, Goldberg RB, Kendall DM, Zagar AJ, Jacober SJ, Khan MA, Perez AT, Tan MH. on behalf of the GLAI study investigators. Pioglitazone and rosiglitazone have different effects on serum lipoprotein particle concentrations and sizes in patients with type 2 diabetes and dyslipidemia. Diabetes Care. 2007;30:2458–64.PubMedCrossRefGoogle Scholar
  28. 28.
    DeFronzo RA. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 2009;58:773–95.PubMedCrossRefGoogle Scholar
  29. 29.
    DeLalla OF, Gofman JW. Ultracentrifugal analysis of serum lipoproteins. Methods Biochem Anal. 1954;1:459–78.CrossRefGoogle Scholar
  30. 30.
    Drucker DJ, Buse JB, Taylor K, et al. for the DURATION-1 Study Group. Exenatide once weekly versus twice daily for the treatment of type 2 diabetes: a randomised, open-label, non-inferiority study. Lancet. 2008;372:1240–50.PubMedCrossRefGoogle Scholar
  31. 31.
    Enkhmaa B, Anuurad E, Zhang W, Tran T, Berglund L. Lipoprotein(a): genotype-phenotype relationship and impact on atherogenic risk. Metab Syndr Relat Disord. 2011;9:411–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Feingold KR, Grunfeld C, Pang M, Doerrler W, Krauss RM. LDL subclass phenotypes and triglyceride metabolism in non-insulin-dependent diabetes. Arterioscler Thromb Vasc Biol. 1992;12:1496–502.CrossRefGoogle Scholar
  33. 33.
    Festa A, Williams K, Hanley AJG, Otvos JD, Goff DC, Wagenknecht LE, Haffner SM. Nuclear magnetic resonance lipoprotein abnormalities in prediabetic subjects in the insulin resistance atherosclerosis study. Circulation. 2005;111:3465–72.PubMedCrossRefGoogle Scholar
  34. 34.
    Franceschini G, Bondoli A, Granata D, Mercuri V, Negri M, Tosi C, Sirtori CR. Reduced HDL2 levels in myocardial infarction patients without risk factors for atherosclerosis. Atherosclerosis. 1987;68:213–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Freedman DS, Otvos JD, Jeyarajah EJ, Shalaurova I, Cupples LA, Parise H, D’Agostino RB, Wilson PWF, Schaefer EJ. Sex and age differences in lipoprotein subclasses measured by nuclear magnetic resonance spectroscopy: The Framingham Study. Clinical Chem. 2004;50:1189–200.CrossRefGoogle Scholar
  36. 36.
    Friedewald W, Levy R, Fredrickson D. Estimation of concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18:499–502.PubMedGoogle Scholar
  37. 37.
    Friedlander Y, Kidron M, Caslake M, Lamb T, McConnell M, Bar-On H. Low density lipoprotein particle size and risk factors of insulin resistance syndrome. Atherosclerosis. 2000;148:141–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Fujimoto WY, Bergstrom RW, Boyko EJ, Chen KW, Leonetti DL, Newell-Morris L, Shofer JB, Wahl PW. Visceral adiposity and incident coronary heart disease in Japanese-American men: The 10-year follow-up results of the Seattle Japanese-American Community Diabetes Study. Diabetes Care. 1999;22: 1808–12.PubMedCrossRefGoogle Scholar
  39. 39.
    Garvey WT, Kwon S, Zheng D, Shaughnessy S, Wallace P, Hutto A, Pugh K, Jenkins AJ, Klein RL, Liao Y. Effects of insulin resistance and type 2 diabetes on lipoprotein subclass particle size and concentration determined by nuclear magnetic resonance. Diabetes. 2003;52:453–62.PubMedCrossRefGoogle Scholar
  40. 40.
    Goff Jr DC, D'Agostino Jr RB, Haffner SM, Otvos JD. Insulin resistance and adiposity influence lipoprotein size and subclass concentrations. Results from the insulin resistance atherosclerosis Study. Metabolism. 2005;54:264–70.PubMedCrossRefGoogle Scholar
  41. 41.
    Gofman JW. Serum lipoproteins and the evaluation of atherosclerosis. Ann N Y Acad Sci. 1956;64:590–5.PubMedCrossRefGoogle Scholar
  42. 42.
    Gofman JW, Lindgren F, Elliott H, et al. The role of lipids and lipoproteins in atherosclerosis. Science. 1950;111:166–71.PubMedCrossRefGoogle Scholar
  43. 43.
    Gofman JW, Young W, Tandy R. Ischemic heart disease, atherosclerosis, and longevity. Circulation. 1966;34:679–97.PubMedCrossRefGoogle Scholar
  44. 44.
    Goldberg RB, Kendall DM, Deeg MA, Buse JB, Zagar AJ, Pinaire JA, Tan MH, Khan MA, Perez AT, Jacober SJ. for the GLAI study investigators. A comparison of lipid and glycemic effects of pioglitazone and rosiglitazone in patients with type 2 diabetes and dyslipidemia. Diabetes Care. 2005;28:1547–54.PubMedCrossRefGoogle Scholar
  45. 45.
    Gómez-Pérez FJ, Aguilar-Salinas CA, Vázquez-Chávez C, Fanghänel-Salmón G, Gallegos-Martínez J, Gómez-Diaz RA, Salinas-Orozco S, Chavira-López IJ, Sánchez-Reyes L, Torres-Acosta EM, Tamez R, López A, Guillén LE, Cesarman G. Further insight on the hypoglycemic and nonhypoglycemic effects of troglitazone 400 or 600 mg/d: effects on the very-low-density and high-density lipoprotein particle distribution. Metabolism. 2002;51:44–51.PubMedCrossRefGoogle Scholar
  46. 46.
    Gray RS, Robbins DC, Wang W, Yeh JL, Fabsitz RR, Cowan LD, Welty TK, Lee ET, Krauss RM, Howard BV. Relation of LDL size to the insulin resistance syndrome and coronary heart disease in American Indians: The Strong Heart Study. Arterioscler Thromb Vasc Biol. 1997;17:2713–20.PubMedCrossRefGoogle Scholar
  47. 47.
    Grundy SM, Vega GL, Otvos JD, Rainwater DL, Cohen JC. Hepatic lipase influences high density lipoprotein subclass distribution in normotriglyceridemic men: genetic and pharmacological evidence. J Lipid Res. 1999;40:229–34.PubMedGoogle Scholar
  48. 48.
    Haffner SM, Mykkanen L, Valdez RA, Paidi M, Stern MP, Howard BV. LDL size and subclass pattern in a biethnic population. Arterioscler Thromb Vasc Biol. 1993;13:1623–30.CrossRefGoogle Scholar
  49. 49.
    Hallman DM, Brown SA, Ballantyne CM, Sharrett AR, Boerwinkle E. Relationship between low-density lipoprotein subclasses and asymptomatic atherosclerosis in subjects from the Atherosclerosis Risk in Communities (ARIC) Study. Biomarkers. 2004;9:190–202.PubMedCrossRefGoogle Scholar
  50. 50.
    Hite AH, Berkowitz VG, Berkowitz K. Low-carbohydrate diet review: shifting the paradigm. Nutr Clin Pract. 2011;26:300–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Hodge AM, Jenkins AJ, English DR, O'Dea K, Giles GG. NMR-determined lipoprotein subclass profile predicts type 2 diabetes. Diabetes Res Clin Pract. 2009;83:132–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Holewijn S, den Heijer M, Swinkels DW, Stalenhoef AF, de Graaf J. Apolipoprotein B, non-HDL cholesterol and LDL cholesterol for identifying individuals at increased cardiovascular risk. J Intern Med. 2010;268:567–77.PubMedCrossRefGoogle Scholar
  53. 53.
    Howard WJ, Russell M, Fleg JL, Mete M, Ali T, Devereux RB, Galloway JM, Otvos JD, Ratner RE, Roman MJ, Silverman A, Umans JG, Weissman NJ, Wilson C, Howard BV. Prevention of atherosclerosis with low-density lipoprotein cholesterol lowering-lipoprotein changes and interactions: the SANDS study. J Clin Lipidology. 2009;3:322–31.CrossRefGoogle Scholar
  54. 54.
    Hulley SB, Cook SG, Wilson WS, Nichaman MZ, Hatch FT, Lindgren FT. Quantitation of serum lipoproteins by electrophoresis on agarose gel: standarization in lipoprotein concentration units (mg/100 mg) by comparison with analytical ultracentrifugation. J Lipid Res. 1971;12:420–33.PubMedGoogle Scholar
  55. 55.
    Ip S, Lichtenstein AH, Chung M, Lau J, Balk EM. Systematic review: association of low-density lipoprotein subfractions with cardiovascular outcomes. Ann Intern Med. 2009;150:474–84.PubMedCrossRefGoogle Scholar
  56. 56.
    Jeyarajah EJ, Cromwell WC, Otvos JD. Lipoprotein particle analysis by nuclear magnetic resonance spectroscopy. Clin Lab Med. 2006;26:847–70.PubMedCrossRefGoogle Scholar
  57. 57.
    Kannel WB, Dawber TR, Friedman GD. Risk factors in coronary heart disease. An evaluation of several serum lipids as predictors of coronary heart disease. The Framingham Study. Ann Intern Med. 1964;61:888–99.PubMedCrossRefGoogle Scholar
  58. 58.
    Kathiresan S, Otvos JS, Sullivan LM, Keyes MJ, Schaefer EJ, Wilson PWF, D’Agostino RB, Vasan RS, Robins SJ. Increased small low-density lipoprotein particle number: a prominent feature of the metabolic syndrome in the Framingham Heart study. Circulation. 2006;113:20–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Krauss RM. Heterogeneity of plasma low-density lipoproteins and atherosclerosis risk. Curr Opin Lipidol. 1994;5:339–49.PubMedCrossRefGoogle Scholar
  60. 60.
    Krauss RM, Blanche PJ. Detection and quantitation of LDL subfractions. Curr Opin Lipidol. 1992;3:377–83.CrossRefGoogle Scholar
  61. 61.
    Krauss RM, Burke DJ. Identification of multiple subclasses of plasma low density lipoproteins in normal humans. J Lipid Res. 1982;23:97–104.PubMedGoogle Scholar
  62. 62.
    Krauss RM, Lindgren FT, Ray RM. Interrelationships among subgroups of serum lipoproteins in normal human subjects. Clin Chim Acta. 1980;104:275–90.PubMedCrossRefGoogle Scholar
  63. 63.
    Kulkarni KR. Cholesterol profile measurement by vertical auto profile method. Clin Lab Med. 2006;26:787–802.PubMedCrossRefGoogle Scholar
  64. 64.
    Kulkarni KR, Markovitz JH, Nanda NC, Segrest JP. Increased prevalence of smaller and denser LDL particles in Asian Indians. Arterioscler Throm Vasc Biol. 1999;19:2749–55.CrossRefGoogle Scholar
  65. 65.
    Kuller L, Arnold A, Tracy R, et al. Nuclear magnetic resonance spectroscopy of lipoproteins and risk of coronary heart disease in the cardiovascular health study. Arterioscler Thromb Vasc Biol. 2002;22: 1175–80.PubMedCrossRefGoogle Scholar
  66. 66.
    Kuller LH, Grandits G, Jerome D, Cohen JD, Neaton JD, Prineas R. for the Multiple Risk Factor Intervention Trial Research Group. Lipoprotein particles, insulin, adiponectin, C-reactive protein and risk of coronary heart disease among men with metabolic syndrome. Atherosclerosis. 2007;195:122–8.PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Laakso M, Lehto S, Penttilä I, Pyörälä K. Lipids and lipoproteins predicting coronary heart disease mortality and morbidity in patients with non-insulin dependent diabetes. Circulation. 1993;88:1421–30.PubMedCrossRefGoogle Scholar
  68. 68.
    Lamarche B, Moorjani S, Cantin B, et al. Associations of HDL2 and HDL3 subfractions with ischemic heart disease in men. Prospective results from the Québec Cardiovascular Study. Arterioscler Thromb Vasc Biol. 1997;17:1098–105.PubMedCrossRefGoogle Scholar
  69. 69.
    Lee W, Min WK, Chun S, Jang S, Kim JQ, Lee DH, Park JY, Park H, Son JE. Low-density lipoprotein subclass and its correlating factors in diabetics. Clin Biochem. 2003;36:657–61.PubMedCrossRefGoogle Scholar
  70. 70.
    Lindgren FT, Jensen LC, Wills RD, Freeman NK. Flotation rates, molecular weights and hydrated densities of the low-density lipoproteins. Lipids. 1969;4: 337–44.PubMedCrossRefGoogle Scholar
  71. 71.
    Lindgren FT, Silvers A, Jutaglr R, Layshot L, Bradley DD. A comparison of simplified methods for lipoprotein quantification using the analytic ultracentrifuge as a standard. Lipids. 1977;12:278–82.PubMedCrossRefGoogle Scholar
  72. 72.
    Liu J, Sempos CT, Donahue RP, Dorn J, Trevisan M, Grundy SM. Non-high-density lipoprotein and very-low-density lipoprotein cholesterol and their risk predictive values in coronary heart disease. Am J Cardiol. 2006;98:1363–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Lorenz MW, Markus HS, Bots ML, Rosvall M, Sitzer M. Prediction of clinical cardiovascular events with carotid intima-media thickness: a systematic review and meta-analysis. Circulation. 2007;115: 459–67.PubMedCrossRefGoogle Scholar
  74. 74.
    Lyons TJ, Jenkins AJ, Zheng D, Klein RL, Otvos JD, Yu Y, Lackland DT, McGee D, McHenry MB, Lopes-Virella M, Garvey WT, DCCT/EDIC Research Group. Nuclear magnetic resonance-determined lipoprotein subclass profile in the DCCT/EDIC cohort: associations with carotid intima-media thickness. Diabet Med. 2006;23:955–66.PubMedCrossRefGoogle Scholar
  75. 75.
    Mackey RH, Kuller LH, Sutton-Tyrrell K, Evans RW, Holubkov R, Matthews KA. Lipoprotein subclasses and coronary artery calcium in postmenopausal women from the healthy women study. Am J Cardiol. 2002;90:71–6.CrossRefGoogle Scholar
  76. 76.
    Maki KC, Dicklin MR, Davidson MH, Mize PD, Kulkarni KR. Indicators of the atherogenic lipoprotein phenotype measured with density gradient ultracentrifugation predict changes in carotid intima-media thickness in men and women. Vasc Hlth Risk Manag. 2012;8:31–8.CrossRefGoogle Scholar
  77. 77.
    Marcovina SM, Albers JJ, Gabel B, Koschinsky ML, Gaur VP. Effect of the number of apolipoprotein(a) kringle 4 domains on immunochemical measurements of lipoprotein(a). Clin Chem. 1995;41:246–55.PubMedGoogle Scholar
  78. 78.
    Marniemi J, Maki J, Maatela J, Jarvisalo J, Impivaara O. Poor applicability of the Friedewald formula in the assessment of serum LDL cholesterol for clinical purposes. Clin Biochem. 1995;28:285–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Marso SP, Mehta SK, Frutkin A, House JA, McCrary JR, Kulkani KR. Low adiponectin levels are associated with atherogenic dyslipidemia and lipid-rich plaque in nondiabetic coronary arteries. Diabetes Care. 2008;31:989–94.PubMedCrossRefGoogle Scholar
  80. 80.
    Masoura C, Pitsavos C, Aznaouridis K, Skoumas I, Vlachopoulos C, Stefanadis C. Arterial endothelial function and wall thickness in familial hypercholesterolemia and familial combined hyperlipidemia and the effect of statins. A systematic review and meta-analysis. Atherosclerosis. 2011;214:129–38.PubMedCrossRefGoogle Scholar
  81. 81.
    May HT, Anderson JL, Pearson RR, Jensen JR, Horne BD, Lavasani F, Yannicelli HD, Muhlestein JB. Comparison of effects of simvastatin alone versus fenofibrate b alone versus simvastatin plus fenofibrate on lipoprotein subparticle profiles in diabetic patients with mixed dyslipidemia (from the Diabetes and Combined Lipid Therapy Regimen study). Am J Cardiol. 2008;101:486–9.PubMedCrossRefGoogle Scholar
  82. 82.
    Mazzone T, Meyer PM, Feinstein SB, Davidson MH, Kondos GT, D’Agostino Sr RB, Perez A, Provost JC, Haffner SM. Effect of pioglitazone compared with glimepiride on carotid intima-media thickness in type 2 diabetes: a randomized trial. JAMA. 2006;296:2572–81.PubMedCrossRefGoogle Scholar
  83. 83.
    McKenney JM, Jones PH, Bays HE, et al. Comparative effects on lipid levels of combination therapy with a statin and extended-release niacin or ezetimibe versus a statin alone (the COMPELL study). Atherosclerosis. 2007;192:432–7.PubMedCrossRefGoogle Scholar
  84. 84.
    McNamara JR, Campos H, Ordovas JM, Peterson J, Wilson PW, Schaefer EJ. Effect of gender, age, and lipid status on low density lipoprotein subfraction distribution. Results from the Framingham Offspring Study. Arterioscler Thromb Vasc Biol. 1987;7:483–90.CrossRefGoogle Scholar
  85. 85.
    Miller M, Dobs A, Yuan Z, Battisti WP, Palmisano J. The effect of simvastatin on triglyceride-rich lipoproteins in patients with type 2 diabetic dyslipidemia: a SILHOUETTE trial sub-study. Curr Med Res Opin. 2006;22:343–50.PubMedCrossRefGoogle Scholar
  86. 86.
    Mora S, Szklo M, Otvos JD, Greenland P, Psaty BM, Goff DC, O’Leary DH, Saad MF, Tsai MY, Sharrett AR. LDL particle subclasses, LDL particle size, and carotid atherosclerosis in the Multi-Ethnic Study of Atherosclerosis (MESA). Atherosclerosis. 2007;192:211–7.PubMedCrossRefGoogle Scholar
  87. 87.
    Nakano K, Hasegawa G, Fukui M, Yamasaki M, Ishihara K, Tooru Takashima T, Kitagawa Y, Fujinami A, Ohta M, Hara H, Adachi T, Masakazu Ogata M, Hiroshi Obayashi H, Naoto NN. Effect of pioglitazone on various parameters of insulin resistance including lipoprotein subclass according to particle size by a gel-permeation high-performance liquid chromatography in newly diagnosed patients with type 2 diabetes. Endocrine J. 2010;57:423–30.CrossRefGoogle Scholar
  88. 88.
    NCEP Expert Panel. Third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) final report. Circulation. 2002;106:3143–421.Google Scholar
  89. 89.
    Niemeijer-Kanters SD, Dallinga-Thie GM, de Ruijter-Heijstek FC, Algra A, Erkelens DW, Banga JD, Jansen H. Effect of intensive lipid-lowering strategy on low-density lipoprotein particle size in patients with type 2 diabetes mellitus. Atherosclerosis. 2001;156:209–16.PubMedCrossRefGoogle Scholar
  90. 90.
    Nissen SE, Nicholls SJ, Wolski K, Nesto R, Kupfer S, Perez A, Jure H, De Larochelliere R, Staniloae CS, Mavromatis K, Saw J, Hu B, Lincoff AM, Tuzcu EM, PERISCOPE Investigators. Comparison of pioglitazone versus glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: the PERISCOPE randomized controlled trial. JAMA. 2008;299:1561–73.PubMedCrossRefGoogle Scholar
  91. 91.
    Nordestgaard BG, Chapman MJ, Ray K, et al. European Atherosclerosis Society Consensus Panel. Lipoprotein(a) as a cardiovascular risk factor: current status. Eur Heart J. 2010;31:2844–53.PubMedCrossRefGoogle Scholar
  92. 92.
    Otvos JD, Jeyarajah EJ, Bennett DW. Quantification of plasma lipoproteins by proton nuclear magnetic resonance spectroscopy. Clin Chem. 1991;37: 377–86.PubMedGoogle Scholar
  93. 93.
    Otvos JD, Jeyarajah EJ, Bennett DW, Krauss RM. Development of a proton nuclear magnetic resonance spectroscopic method for determining plasma lipoprotein concentrations and subspecies distributions from a single, rapid measurement. Clin Chem. 1992;38:1632–8.PubMedGoogle Scholar
  94. 94.
    Otvos JD, Jeyarajah EJ, Cromwell WC. Measurement issues related to lipoprotein heterogeneity. Am J Cardiol. 2002;90(Suppl):22i–9.PubMedCrossRefGoogle Scholar
  95. 95.
    Otvos JD, Collins D, Freedman DS, et al. Low-density lipoprotein and high-density lipoprotein particle subclasses predict coronary events and are favorably changed by gemfibrozil therapy in the Veterans Affairs High-Density Lipoprotein Intervention Trial. Circulation. 2006;113:1556–63.PubMedCrossRefGoogle Scholar
  96. 96.
    Otvos JD, Mora S, Shalaurova I, Greenland P, Mackey RH, Goff DC. Clinical implications of discordance between low density lipoprotein cholesterol and particle number. J Clin Lipidol. 2011;5: 105–13.PubMedCentralPubMedCrossRefGoogle Scholar
  97. 97.
    Packard CJ. Triacylglycerol-rich lipoproteins and the generation of small, dense low-density lipoprotein. Biochem Soc Trans. 2003;31(Pt 5):1066–9.PubMedCrossRefGoogle Scholar
  98. 98.
    Perez A, Khan M, Johnson T, Karunaratne M. Pioglitazone plus a sulphonylurea or metformin is associated with increased lipoprotein particle size in patients with type 2 diabetes. Diabetes Vasc Dis Res. 2004;1:44–50.CrossRefGoogle Scholar
  99. 99.
    Pischon T, Girman CJ, Sacks FM, Rifai N, Stampfer MJ, Rimm EB. Non-high-density lipoprotein cholesterol and apolipoprotein B in the prediction of coronary heart disease in men. Circulation. 2005; 112:3375–83.PubMedCrossRefGoogle Scholar
  100. 100.
    Polak JF, Pencina MJ, Pencina KM, O’Donnell CJ, Wolf PA, D’Agostino RB. Carotid-wall intima–media thickness and cardiovascular events. N Engl J Med. 2011;365:213–21.PubMedCentralPubMedCrossRefGoogle Scholar
  101. 101.
    Pontrelli L, Parris W, Adeli K, Cheung RC. Atorvastatin treatment beneficially alters the lipoprotein profile and increases low-density lipoprotein particle diameter in patients with combined dyslipidemia and impaired fasting glucose/type 2 diabetes. Metabolism. 2002;51:334–432.PubMedCrossRefGoogle Scholar
  102. 102.
    Reaven GM, Chen YI Y, Jeppesen J, Maheux P, Krauss RM. Insulin resistance and hyperinsulinemia in individuals with small, dense, low density lipoprotein particles. J Clin Invest. 1993;92:141–6.PubMedCentralPubMedCrossRefGoogle Scholar
  103. 103.
    Roeters van Lennep JE, Westerveld HT, Erkelens DW, van der Wall EE. Risk factors for coronary heart disease: implications of gender. Cardiovasc Res. 2002;53:538–49.PubMedCrossRefGoogle Scholar
  104. 104.
    Rosenson RS, Otvos JD, Freedman DS. Relations of lipoprotein subclass levels and low-density lipoprotein size to progression of coronary artery disease in the Pravastatin Limitation of Atherosclerosis in the Coronary Arteries (PLAC-I) trial. Am J Cardiol. 2002;90:89–94.PubMedCrossRefGoogle Scholar
  105. 105.
    Sacks FM, Campos H. Low-density lipoprotein size and cardiovascular disease: a reappraisal. J Clin Endocrinol Metab. 2003;88:4525–32.PubMedCrossRefGoogle Scholar
  106. 106.
    Salonen JT, Salonen R, Seppänen K, Rauramaa R, Tuomilehto J. HDL, HDL2, and HDL3 subfractions, and the risk of acute myocardial infarction. A prospective population study in eastern Finnish men. Circulation. 1991;84:129–39.PubMedCrossRefGoogle Scholar
  107. 107.
    Schaefer EJ, McNamara JR, Tayler T, Daly JA, Gleason JL, Seman LJ, Ferrari A, Rubenstein JJ. Comparisons of effects of statins (atorvastatin, fluvastatin, lovastatin, pravastatin, and simvastatin) on fasting and postprandial lipoproteins in patients with coronary heart disease versus control subjects. Am J Cardiol. 2004;93:31–9.PubMedCrossRefGoogle Scholar
  108. 108.
    Selby JV, Austin MA, Newman B, Zhang D, Quesenberry CP, Mayer EJ, Krauss RM. LDL subclass phenotypes and the insulin resistance syndrome in women. Circulation. 1993;88:381–7.PubMedCrossRefGoogle Scholar
  109. 109.
    Seman LJ, DeLuca C, Jenner JL, et al. Lipoprotein(a)-cholesterol and coronary heart disease in the Framingham Heart study. Clin Chem. 1999;45:1039–46.PubMedGoogle Scholar
  110. 110.
    Senti M, Pedro-Botet J, Rubies-Prat J, Vidal-Barraquer F. Secondary prevention of coronary heart disease in patients with extracoronary atherosclerosis: a need for accuracy of low density lipoprotein determination. Angiology. 1996;47:241–6.PubMedCrossRefGoogle Scholar
  111. 111.
    Sharrett AR, Ballantyne CM, Coady SA, et al. Coronary heart disease prediction from lipoprotein cholesterol levels, triglycerides, lipoprotein(a), apolipoproteins A–I and B, and HDL density subfractions: the Atherosclerosis Risk in Communities (ARIC) Study. Circulation. 2001;104:1108–13.PubMedCrossRefGoogle Scholar
  112. 112.
    Shen MMS, Krauss RM, Lindgren FT, Forte TM. Heterogeneity of serum low density lipoproteins in normal human subjects. J Lipid Res. 1981;22:236–44.PubMedGoogle Scholar
  113. 113.
    Shimabukuro M, Higa M, Tanaka H, Shimabukuro T, Yamakawa K, Masuzaki H. Distinct effects of pitavastatin and atorvastatin on lipoprotein subclasses in patients with type 2 diabetes mellitus. Diabet Med. 2011;28:856–64.PubMedCrossRefGoogle Scholar
  114. 114.
    Sniderman AD, Furberg CD, Keech A, et al. Apolipoproteins versus lipids as indices of coronary risk and as targets for statin treatment. Lancet. 2003;361:777–80.PubMedCrossRefGoogle Scholar
  115. 115.
    Sniderman AJ, Williams K, Contois JH, Monroe HM, McQueen MJ, de Graaf J, Furberg CD. A meta-analysis of low-density lipoprotein cholesterol, non-high-density lipoprotein cholesterol, and apolipoprotein B as markers of cardiovascular risk. Circ Cardiovasc Qual Outcomes. 2011;4:337–45.PubMedCrossRefGoogle Scholar
  116. 116.
    Soedamah-Muthu SS, Colhoun HM, Thomason MJ, Betteridge DJ, Durrington PN, Hitman GA, Fuller JH, Julier K, Mackness MI, Neil HA, CARDS Investigators. The effect of atorvastatin on serum lipids, lipoproteins and NMR spectroscopy defined lipoprotein subclasses in type 2 diabetic patients with ischaemic heart disease. Atherosclerosis. 2003;167:243–55.PubMedCrossRefGoogle Scholar
  117. 117.
    Soedamah-Muthu SS, Chang Y-F, Otvos J, Evans RW, Orchard TJ. Lipoprotein subclass measurements by nuclear magnetic resonance spectroscopy improve the prediction of coronary artery disease in Type 1 diabetes. A prospective report from the Pittsburgh Epidemiology of Diabetes Complications Study. Diabetologia. 2003;46:674–82.PubMedCrossRefGoogle Scholar
  118. 118.
    Stampfer MJ, Sacks FM, Salvini S, Willett WC, Hennekens CH. A prospective study of cholesterol, apolipoproteins, and the risk of myocardial infarction. N Engl J Med. 1991;325:373–81.PubMedCrossRefGoogle Scholar
  119. 119.
    Stein JH, Johnson HM. Carotid intima-media thickness, plaques, and cardiovascular disease risk implications for preventive cardiology guidelines. J Amer Coll Cardiol. 2010;55:1608–10.CrossRefGoogle Scholar
  120. 120.
    Stein JH, Korcarz CE, Hurst RT, Lonn E, Kendall CB, Mohler ER, Najjar SS, Rembold CM, Post WS, American Society of Echocardiography Carotid Intima-Media Thickness Task Force. Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk: a consensus statement from the American Society of Echocardiography Carotid Intima-Media Thickness Task Force. Endorsed by the Society for Vascular Medicine. J Am Soc Echocardiogr. 2008;21:93–111.PubMedCrossRefGoogle Scholar
  121. 121.
    St-Pierre AC, Ruel IL, Cantin B. Comparison of various electrophoretic characteristics of LDL particles and their relationship to the risk of ischemic heart disease. Circulation. 2001;104:2295–9.PubMedCrossRefGoogle Scholar
  122. 122.
    St-Pierre AC, Cantin B, Dagenais GR, et al. Low-density lipoprotein subfractions and the long-term risk of ischemic heart disease in men: 13-year follow-up data from the Québec Cardiovascular Study. Arterioscler Thromb Vasc Biol. 2005;25:553–9.PubMedCrossRefGoogle Scholar
  123. 123.
    Superko HR. Advanced lipoprotein testing and subfractionation are clinically useful. Circulation. 2009;119:2383–95.PubMedCrossRefGoogle Scholar
  124. 124.
    Sweetnam PM, Bolton CH, Yarnell JW, et al. Associations of the HDL2 and HDL3 cholesterol subfractions with the development of ischemic heart disease in British men. The Caerphilly and Speedwell Collaborative Heart Disease Studies. Circulation. 1994;90:769–74.PubMedCrossRefGoogle Scholar
  125. 125.
    Tan KCB, Shiu SWM, Chu BYM. Roles of hepatic lipase and cholesterol ester transfer protein in determining low density lipoprotein subfraction distribution in Chinese patients with noninsulin-dependent diabetes mellitus. Atherosclerosis. 1999;145:273–8.PubMedCrossRefGoogle Scholar
  126. 126.
    Tan HC, Tai ES, Sviridov D, Nestel PJ, Ng C, Chan E, Teo Y, Wai DC. Relationships between cholesterol efflux and high-density lipoprotein particles in patients with type 2 diabetes mellitus. J Clin Lipidol. 2011;5:467–73.PubMedCrossRefGoogle Scholar
  127. 127.
    Tomassini JE, Mazzone T, Goldberg RB, Guyton JR, Weinstock RS, Polis A, Jensen E, Tershakovec AM. Effect of ezetimibe/simvastatin compared with atorvastatin on lipoprotein subclasses in patients with type 2 diabetes and hypercholesterolaemia. Diabetes Obes Metab. 2009;11:855–64.PubMedCrossRefGoogle Scholar
  128. 128.
    van Tol A, van der Gaag MS, Scheek LM, van Gent T, Hendriks HF. Changes in postprandial lipoproteins of low and high density caused by moderate alcohol consumption with dinner. Atherosclerosis. 1998;141 Suppl 1:S101–3.PubMedGoogle Scholar
  129. 129.
    Williams PT. Fifty-three year follow-up of coronary heart disease versus HDL2 and other lipoproteins in Gofman’s Livermore Cohort. J Lipid Res. 2012;53: 266–72.PubMedCrossRefGoogle Scholar
  130. 130.
    Williams PT, Feldman DE. Prospective study of coronary heart disease vs. HDL2, HDL3, and other lipoproteins in Gofman’s Livermore Cohort. Atherosclerosis. 2011;214:196–202.PubMedCentralPubMedCrossRefGoogle Scholar
  131. 131.
    Zhu S, Su G, Meng QH. Inhibitory effects of micronized fenofibrate on carotid atherosclerosis in patients with essential hypertension. Clin Chem. 2006;52: 2036–42.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Michael Cobble
    • 1
    • 2
    Email author
  • Patrick D. Mize
    • 3
  • Eliot A. Brinton
    • 4
  1. 1.CMO Atherotech Diagnostics LabBirminghamUSA
  2. 2.Canyons Medical CenterSandyUSA
  3. 3.Atherotech Diagnostics LabBirminghamUSA
  4. 4.Atherometabolic ResearchMurrayUSA

Personalised recommendations