Semantic Web Service Composition: The Web Service Challenge Perspective

Chapter

Abstract

Service-oriented architecture (SOA) is a software design paradigm for creating highly modular, distributed applications. Web services can implement well-defined, atomic functions which can be composed into high-level business processes. The composition of clearly separable modules is one of the key advantages of SOAs. This article provides an overview of research, challenges, and competitions in this domain. We first define and discuss the general notions of syntactical and semantic discovery/composition and the corresponding quality of service (QoS) features. One focus of this chapter is the Web Service Challenge (WSC), which has established an extensive body of knowledge and community of researchers in the area of web service composition. We discuss the structure, requirements, and utilities provided in the scope of this competition. The paper furthermore includes a detailed literature review of the activities of the WSC event in context of the related initiatives.

References

  1. 1.
    Second IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’96), IEEE (1996)Google Scholar
  2. 2.
    Eleventh International Conference on World Wide (WWW’02), ACM (2002)Google Scholar
  3. 3.
    IEEE International Conference on E-Technology, E-Commerce, and E-Service (IEEE’05), IEEE (2005)Google Scholar
  4. 4.
    IEEE International Conference on Web Services: Bridge the Gap between Business Services and IT Services (ICWS’05), IEEE (2005)Google Scholar
  5. 5.
    Web Service Challenge at ICEBE’05 (2005)Google Scholar
  6. 6.
    First Workshop of the Semantic Web Service Challenge: Challenge on Automating Web Services Mediation, Choreography and Discovery, 2006. The Digital Enterprise Research Institute (DERI), Stanford (2006). http://sws-challenge.org/wiki/index.php/Workshop_Stanford
  7. 7.
    IEEE International Conference on Web Services (ICWS’06), IEEE (2006)Google Scholar
  8. 8.
    Second Workshop of the Semantic Web Service Challenge: Challenge on Automating Web Services Mediation, Choreography and Discovery, 2006. DERI, Standford (2006). http://sws-challenge.org/wiki/index.php/Workshop_Budva
  9. 9.
    Third Workshop of the Semantic Web Service Challenge: Challenge on Automating Web Services Mediation, Choreography and Discovery, 2006. DERI, Standford (2006). http://sws-challenge.org/wiki/index.php/Workshop_Athens
  10. 10.
    Kweb, SWS Challenge Workshop, 2007. Semantic Technology Institute Innsbruck, Innsbruck (2007). http://sws-challenge.org/wiki/index.php/Workshop_Innsbruck
  11. 11.
    IEEE Joint Conference on E-Commerce Technology (9th CEC) and Enterprise Computing, E-Commerce and E-Services (4th EEE) (CEC/EEE’07), IEEE (2007)Google Scholar
  12. 12.
    Second IEEE International Services Computing Contest (SCContest’07), IEEE (2007)Google Scholar
  13. 13.
    IEEE Joint Conference on E-Commerce Technology (10th CEC) and Enterprise Computing, E-Commerce and E-Services (5th EEE) (CEC/EEE’08), IEEE (2008)Google Scholar
  14. 14.
    Seventh Semantic Web Services Challenge Workshop (SWSC’08). Springer, Berlin (2008). http://sws-challenge.org/wiki/index.php/Workshop_Karlsruhe
  15. 15.
    Third IEEE International Services Computing Contest, IEEE (2008)Google Scholar
  16. 16.
    SERVICES Cup’09, IEEE (2009)Google Scholar
  17. 17.
    IEEE International Conference on Service-Oriented Computing and Applications (SOCA’10), IEEE (2010)Google Scholar
  18. 18.
    SERVICES Cup’10 (2010)Google Scholar
  19. 19.
    AbuJarour, M., Craculeac, M., Menge, F., Vogel, T., Schwarz, J.: Posr: a comprehensive system for aggregating and using web services. In [16], pp. 139–146 (2009)Google Scholar
  20. 20.
    Aiello, M., Platzer, C., Rosenberg, F., Tran, H., Vasko, M., Dustdar, S.: Web service indexing for efficient retrieval and composition. In [205], pp. 424–426 (2006)Google Scholar
  21. 21.
    Aiello, M., van Benthem, N., el Khoury, E.: Visualizing compositions of services from large repositories. In [13], pp. 359–362 (2008)Google Scholar
  22. 22.
    Aiello, M, el Khoury, E., Lazovik, A., Ratelband, P.: Optimal QoS-aware web service composition. In [95], pp 491–494 (2009)Google Scholar
  23. 23.
    Akkiraju, R., Srivastava, B., Ivan, A., Goodwin, R., Syeda-Mahmood, T.: Semantic matching to achieve web service discovery and composition. In [205], pp. 445–447 (2006)Google Scholar
  24. 24.
    Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: BPEL4WS, business process execution language for web services version 1.1. (2003). http://www.ibm.com/developerworks/library/specification/ws-bpel/
  25. 25.
    Ariga, R.K.R., Akula, K., Gujjala, S.R., Karim, M., Ramesh, S., Zhang, J.: iNIU a services portal for NIU students. In [15], pp. 144–151 (2008)Google Scholar
  26. 26.
    Asuncion, C.H., Quartel, D.A.C., Pokraev, S.: Applying goal-oriented and model-driven approaches to solve the payment problem scenario. In [174] (2009)Google Scholar
  27. 27.
    Aversano, L., di Penta, M., Taneja, K.: A genetic programming approach to support the design of service compositions. Int. J. Comput. Syst. Sci. Eng. (CSSE) 21(4), 247–254 (2006)Google Scholar
  28. 28.
    Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press, Oxford (1996)MATHGoogle Scholar
  29. 29.
    Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.): Handbook of Evolutionary Computation. Oxford University Press, Oxford (1997)Google Scholar
  30. 30.
    Bansal, A., Bansal, S., Blake, M.B., Bleul, S., Weise, T.: Overview of the web services challenge (WSC): discovery and composition of semantic web services. In: Blake, M.B., Cabral, L., König-Ries, B., Küster, U., Martin, D. (eds.) Semantic Web Services: Advancement Through Evaluation. Springer, Heidelberg (2012)Google Scholar
  31. 31.
    Bansal, A., Blake, M.B., Kona, S., Bleul, S., Weise, T., Jäger, M.C.: WSC-08: Continuing the web service challenge. In [13], pp. 351–354 (2008)Google Scholar
  32. 32.
    Barnickel, N., Weinand, R., Fluegge, M.: Semantic system integration: incorporating rule based semantic bridges into BPEL processes. In [82] (2008)Google Scholar
  33. 33.
    Bartalos, P., Bieliková, M.: Semantic web service composition framework based on parallel processing. In [95], pp. 495–498 (2009)Google Scholar
  34. 34.
    Beasley, J.E. (ed.): Advances in Linear and Integer Programming. Oxford University Press, Oxford (1996)Google Scholar
  35. 35.
    Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-Schneider, P.F., Stein, L.A.: OWL web ontology language reference. In: W3C recommendation, W3C (2004). http://www.w3.org/TR/2004/REC-owl-ref-20040210/
  36. 36.
    Bellman, R.E.: Dynamic Programming Dover Books on Mathematics. Princeton University Press, Princeton (1957)Google Scholar
  37. 37.
    Benatallah, B., Nezhad, H.M.: Interoperability in semantic web services. In [62], pp. 22–25 (2004)Google Scholar
  38. 38.
    Bharadwaj, R., Mukhopadhyay, S., Padh, N.: Service composition in a secure agent-based architecture. In [3], pp. 787–790 (2005)Google Scholar
  39. 39.
    Bieberstein, N., Bose, S., Fiammante, M., Jones, K., Shah, R.: Service-Oriented Architecture (SOA) Compass: Business Value, Planning, and Enterprise Roadmap. DeveloperWorks. Pearson Education, Indianapolis (2005)Google Scholar
  40. 40.
    Biswas, D.: Compensation in the world of web services composition. In [62], pp. 69–80 (2004)Google Scholar
  41. 41.
    Blake, M.B., Tsui, K.C., Wombacher, A.: The EEE-05 challenge: a new web service discovery and composition competition. In [3], pp. 780–783 (2005)Google Scholar
  42. 42.
    Blake, M.B., Cheung, W.K., Jäger, M.C., Wombacher, A.: WSC-06: The web service challenge. In [205], pp. 505–508 (2006)Google Scholar
  43. 43.
    Blake, M.B., Cheung, W.K., Jäger, M.C., Wombacher, A.: WSC-07: evolving the web service challenge. In [11], pp. 505–508 (2007)Google Scholar
  44. 44.
    Blake, M.B., Petrie, C.J., Roman, D.: Workshop on service composition & SWS challenge (SerComp & SWS challenge 2007). In [133], pp. xxi–xxii (2007)Google Scholar
  45. 45.
    Blake, M.B., Weise, T., Bleul, S.: WSC-2010: web services composition and evaluation. In [17] (2010)Google Scholar
  46. 46.
    Bleul, S., Weise, T.: An ontology for quality-aware service discovery. In [222], vol. RC23821 (2005)Google Scholar
  47. 47.
    Bleul, S., Weise, T., Geihs, K.: An ontology for quality-aware service discovery. Int. J. Comput. Syst. Sci. Eng. (CSSE) 21(4), 227–234 (2006)Google Scholar
  48. 48.
    Bleul, S., Weise, T., Geihs, K.: Large-scale service composition in semantic service discovery. In [205], pp. 427–429 (2006)Google Scholar
  49. 49.
    Bleul, S., Weise, T., Geihs, K.: Making a fast semantic service composition system faster. In [11], pp. 517–520 (2007)Google Scholar
  50. 50.
    Bleul, S., Weise, T., Geihs, K.: The web service challenge: a review on semantic web service composition. In: Wagner, M., Hogrefe, D., Geihs, K., David, K. (eds.) Service-Oriented Computing (SOC’2009), vol. 17. European Association of Software, Science and Technology (2009)Google Scholar
  51. 51.
    Booth, D., Liu, C.K.: Web services description language (WSDL) version 2.0 part 0: primer. In: W3C Recommendation, W3C (2007). http://www.w3.org/TR/2007/REC-wsdl20-primer-20070626
  52. 52.
    Bourcier, J., Chazalet, A., Desertot, M., Escoffier, C., Marin, C.: A dynamic-SOA home control gateway. In [66], pp. 463–470 (2006)Google Scholar
  53. 53.
    Brambilla, M., Celino, I., Ceri, S., Cerizza, D., Della Valle, E., Facca, F.M., Tziviskou, C.: Improvements and future perspectives on web engineering methods for automating web services mediation, choreography and discovery. In [9] (2006)Google Scholar
  54. 54.
    Brambilla, M., Ceri, S., Cerizza, D., Della Valle, E., Facca, F.M., Fraternali, P., Tziviskou, C., Web modeling-based approach to automating web services mediation, choreography and discovery. In [6] (2006)Google Scholar
  55. 55.
    Brambilla, M., Ceri, S., Cerizza, D., Della Valle, E., Facca, F.M., Tziviskou, C.: Coping with requirements changes: SWS-challenge phase II. In [8] (2006)Google Scholar
  56. 56.
    Brambilla, M., Celino, I., Ceri, S., Cerizza, D., Della Valle, E., Facca, F.M., Turati, A., Tziviskou, C.: WebML and glue: an integrated discovery approach for the SWS challenge. In [10] (2007)Google Scholar
  57. 57.
    Brambilla, M., Ceri, S., Facca, F.M., Tziviskou, C., Celino, I., Cerizza, D., Della Valle, E., Turati, A.: WebML and glue: an integrated discovery approach for the SWS challenge. In [133], pp 148–151 (2007)Google Scholar
  58. 58.
    Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F.: Extensible markup language (XML) 1.0, 4th edn. In: W3C Recommendation, W3C (2007). http://www.w3.org/TR/2006/REC-xml-20060816
  59. 59.
    Buhler, P.A., Thomas, R.W.: Experiences building a standards-based service description repository. In [13], pp. 343–346 (2008)Google Scholar
  60. 60.
    Buhler, P.A., Greenwood, D., Weichhart, G.: A multiagent web service composition engine, revisited. In [11], pp. 529–532 (2007)Google Scholar
  61. 61.
    Cardoso, J., Sheth, A.P.: Introduction to semantic web services and web process composition. In [62], pp. 1–13 (2004)Google Scholar
  62. 62.
    Cardoso, J., Sheth, A.P. (eds.): Revised Selected Papers from the First International Workshop on Semantic Web Services and Web Process Composition (SWSWPC’04). Springer, Berlin (2004)Google Scholar
  63. 63.
    Cardoso, J., Miller, J.A., Su, J., Pollock, J.: Academic and industrial research: do their approaches differ in adding semantics to web services? In [62] (2004)Google Scholar
  64. 64.
    Cardoso, J., Cordeiro, J., Filipe, J. (eds.): Nineth International Conference on Enterprise Information Systems (ICEIS’07), vol. SAIC. Institute for Systems and Technologies of Information Control and Communication (INSTICC) Press, Miami (2007)Google Scholar
  65. 65.
    Carenini, A., Cerizza, D., Comerio, M., Della Valle, E., De Paoli, F., Maurino, A., Palmonari, M., Sassi, M., Turati, A.: Semantic web service discovery and selection: a test bed scenario. In [82] (2008)Google Scholar
  66. 66.
    Chen, Z., Shoniregun, C.A., You, Y. (eds.): First IEEE international services computing contest (SCContest’06), IEEE (2006). http://iscc.servicescomputing.org/2006/
  67. 67.
    Chodos, D., Stroulia, E.: Second life gift registry: bringing retail web applications into the metaverse. In [15], pp. 199–206 (2008)Google Scholar
  68. 68.
    Chopra, A.K., Desai, N., Singh, M.P.: Business processes interoperation using OWL-P. In [6] (2006)Google Scholar
  69. 69.
    Cimpian, E., Kotinurmi, P., Mocan, A., Moran, M., Vitvar, T., Zaremba, M.: Dynamic RosettaNet integration on the semantic web services. In [6] (2006)Google Scholar
  70. 70.
    Coello Coello, C.A., Lamont, G.B., van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems. Springer, New York (2002)CrossRefMATHGoogle Scholar
  71. 71.
    Colasuonno, F., Coppi, S., Ragone, A., Scorcia, L.L.: jUDDI+: a semantic web services registry enabling semantic discovery and composition. In [205], pp. 442–444 (2006)Google Scholar
  72. 72.
    Cui, L.Y., Kumara, S.R.T., Yoo, J.J., Cavdur, F.: Large-scale network decomposition and mathematical programming based web service composition. In [95], pp. 511–514 (2009)Google Scholar
  73. 73.
    Dai, W., Moynihan, P., Gou, J., Zou, P., Yang, X., Chen, T., Wan, X.: Services oriented knowledge-based supply chain application. In [12], pp. 660–667 (2007)Google Scholar
  74. 74.
    de Mello, E.R., Parastatidis, S., Reinecke, P., Smith, C., van Moorsel, A., Webber, J.: Secure and provable service support for human-intensive real-estate processes. In [66], pp. 495–504 (2006)Google Scholar
  75. 75.
    Degeler, V., Georgievski, I., Lazovik, A., Aiello, M.: Concept mapping for faster QoS-aware web service composition. In [17] (2010)Google Scholar
  76. 76.
    Ding, W., Cheng, J., Qi, K., Li, Y., Zhao, Z., Fang, J.: A domain-specific query language for information services mash-up. In [15], pp. 113–119 (2008)Google Scholar
  77. 77.
    Dorn, J., Hrastnik, P., Rainer, A.: Web service discovery and composition with MOVE. In [3], pp. 791–792 (2005)Google Scholar
  78. 78.
    Dorn, J., Rainer, A., Hrastnik, P.: Toward semantic composition of web services with MOVE. In [205], pp. 437–438 (2006)Google Scholar
  79. 79.
    Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall International Inc Professional Technical References, Upper Saddle River (2006)Google Scholar
  80. 80.
    Fallside, D.C., Walmsley, P.: XML schema part 0: primer, 2nd edn. In: W3C Recommendation, W3C (2004). http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/
  81. 81.
    Fensel, D., Giunchiglia, F., McGuinness, D.L., Williams, M. (eds.): Eighth International Conference on Knowledge Representation and Reasoning (KR’02). Morgan Kaufmann Publishers (2002)Google Scholar
  82. 82.
    García-Castro, R., Gómez-Pérez, A., Petrie, C.J., Della Valle, E., Küster, U., Zaremba, M., Shafiq, O. (eds.): Sixth International Workshop on Evaluation of Ontology-Based Tools and the Semantic Web Service Challenge (EON-SWSC’08), CEUR Workshop Proceedings, vol. 359. RWTH Aachen, Aachen (2008). http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-359/
  83. 83.
    Glover, F., Kochenberger, G.A. (eds.): Handbook of Metaheuristics. Kluwer Academic, Boston (2003)Google Scholar
  84. 84.
    Glover, F., Taillard, É.D., de Werra, D.: A user’s guide to tabu search. Ann. Oper. Res. 41(1), 3–28 (1993)CrossRefMATHGoogle Scholar
  85. 85.
    Gomadam, K., Lathem, J., Miller, J.A., Nagarajan, M., Pennington, C., Sheth, A.P., Verma, K., Wu, Z.: Semantic web services challenge 2006-phase I. In [6] (2006)Google Scholar
  86. 86.
    Greenwood, D., Buhler, P.A., Reitbauer, A.: Web service discovery and composition using the web service integration gateway. In [3], pp. 789–790 (2005)Google Scholar
  87. 87.
    Gschwind, T., Pautasso, C. (eds.): Second Workshop on Emerging Web Services Technology (WEWST’07). Birkhäuser (2007)Google Scholar
  88. 88.
    Gu, Z., Xu, B., Li, J.: Inheritance-aware document-driven service composition. In [11], pp. 513–516 (2007)Google Scholar
  89. 89.
    Habich, D., Richly, S., Rümpel, A., Bücke, W., Preißler, S.: Open service process platform 2.0. In [15], pp. 152–159 (2008)Google Scholar
  90. 90.
    Hallal, H.H., Dury, A., Petrenko, A.: Web-FIM: automated framework for the inference of business software models. In [16], pp. 130–138 (2009)Google Scholar
  91. 91.
    Harzallah, Y., Michel, V., Liu, Q., Wainer, G.: Distributed simulation and web map mash-up for forest fire spread. In [15], pp. 176–183 (2008)Google Scholar
  92. 92.
    Haselwanter, T., Kotinurmi, P., Moran, M., Vitvar, T., Zaremba, M.: Dynamic B2B integration on the semantic web services: SWS challenge phase 2. In [8] (2006)Google Scholar
  93. 93.
    Hertz, A., Taillard, É.D., de Werra, D.: A tutorial on tabu search. In [176], pp. 13–24 (1995)Google Scholar
  94. 94.
    Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, G.: OWL 2 web ontology language primer. In: W3C Recommendation, W3C (2009). http://www.w3.org/TR/2009/REC-owl2-primer-20091027/
  95. 95.
    Hofreiter, B. (ed.): Eleventh IEEE Conference on Commerce and Enterprise Computing (CEC’09), IEEE (2009)Google Scholar
  96. 96.
    Hoyer, V., Gilles, F., Janner, T., Stanoevska-Slabeva, K.: SAP research roof top market place: putting a face on service-oriented architectures. In [16], pp. 107–114 (2009)Google Scholar
  97. 97.
    Hrastnik, P., Rainer, A.: Web service discovery and composition for virtual enterprises. Int. J. Web Serv. Res. (IJWSR) 4(1), 23–29 (2007)CrossRefGoogle Scholar
  98. 98.
    Huang, S., Wang, X., Zhou, A.: Efficient web service composition based on syntactical matching. In [3], pp. 782–783 (2005)Google Scholar
  99. 99.
    Huang, Z., Jiang, W., Hu, S., Liu, Z.: Effective pruning algorithm for QoS-aware service composition. In [95], pp. 519–522 (2009)Google Scholar
  100. 100.
    Jacob, M., Kuscher, A., Plauth, M., Thiele, C.: Automated data augmentation services using text mining, data cleansing and web crawling techniques. In [15], pp. 136–143 (2008)Google Scholar
  101. 101.
    Jeyaverasingam, S., Yan, Y.: A mash up home library management system. In [15], pp. 160–167 (2008)Google Scholar
  102. 102.
    Jordan, D., Evdemon, J., Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B., Curbera, F., Ford, M., Goland, Y., Guízar, A., Kartha, N., Liu, C.K., Khalaf, R., König, D., Marin, M., Mehta, V., Thatte, S., van der Rijn, D., Yendluri, P., Yiu, A.: Web Services Business Process Execution Language Version 2.0: OASIS Standard, OASIS (2007). http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
  103. 103.
    Juszcyk, L., Michlmayer, A., Platzer, C.: Large scale web service discovery and composition using high performance in-memory indexing. In [11], pp. 509–512 (2007)Google Scholar
  104. 104.
    Kart, F., Shen, Z., Gerede, C.E.: The MIDAS system: a service oriented architecture for automated supply chain management. In [66], pp. 487–494 (2006)Google Scholar
  105. 105.
    Kart, F., Miao, G., Moser, L.E., Melliar-Smith, P.M.: A distributed e-healthcare system based on the service oriented architecture. In [12], pp. 652–659 (2007)Google Scholar
  106. 106.
    Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T., Lafon, Y.: Web services choreography description language version 1.0: W3C candidate recommendation. In: W3C Recommendation, W3C (2005). http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109/
  107. 107.
    Keller, A., Ludwig, H.: The WSLA framework: specifying and monitoring service level agreements for web services. J. Netw. Syst. Manag. 11(1), 57–81 (2003)CrossRefGoogle Scholar
  108. 108.
    Kirkpatrick, S., Gelatt Jr, C.D.: Optimization by simulated annealing. Sci. Mag. 220(4598), 671–680 (1983)MathSciNetCrossRefMATHGoogle Scholar
  109. 109.
    Ko, R.K.L., Jusuf, A., Lee, S.G.S.: Genesis: dynamic collaborative business process formulation based on business goals and criteria. In [16], pp. 123–129 (2009)Google Scholar
  110. 110.
    Kona, S., Bansal, A., Gupta, G., Hite, T.D.: Web service discovery and composition using USDL. In [205], pp. 430–432 (2006)Google Scholar
  111. 111.
    Kona, S., Bansal, A., Gupta, G., Hite, T.D.: Semantics-based web service composition engine. In [11], pp. 521–524 (2007)Google Scholar
  112. 112.
    Kona, S., Bansal, A., Blake, M.B., Bleul, S., Weise, T.: WSC-2009: a quality of service-oriented web services challenge. In [95], pp. 487–490 (2009)Google Scholar
  113. 113.
    Kubczak, C., Margaria, T., Steffen, B.: Semantic web services challenge 2006: an approach to mediation and discovery with jABC and miAamic. In [9] (2006)Google Scholar
  114. 114.
    Kubczak, C., Margaria, T., Steffen, B.: Semantic web services challenge 2006: the jABC approach to mediation and choreography. In [8] (2006)Google Scholar
  115. 115.
    Kubczak, C., Nagel, R., Margaria, T., Steffen, B.: The jABC approach to mediation and choreography. In [6] (2006)Google Scholar
  116. 116.
    Kubczak, C., Margaria, T., Steffen, B., Naujokat, S.: Service-oriented mediation with jETI/jABC: verification and export. In [133], pp. 144–147 (2007)Google Scholar
  117. 117.
    Kubczak, C., Margaria, T., Winkler, C., Steffen, B.: Semantic web services challenge 2007: an approach to discovery with miAamics and jABC. In [10] (2007)Google Scholar
  118. 118.
    Kubczak, C., Winkler, C., Margaria, T., Steffen, B.: an approach to discovery with miAamics and jABC. In [133], pp. 157–160 (2007)Google Scholar
  119. 119.
    Kubczak, C., Margaria, T., Kaiser, M., Lemcke, J., Knuth, B.: Abductive synthesis of the mediator scenario with jABC and GEM. In [82] (2008)Google Scholar
  120. 120.
    Küster, U., König-Ries, B.: Discovery and mediation using the DIANE service description. In [9] (2006)Google Scholar
  121. 121.
    Küster, U., König-Ries, B.: Semantic mediation between business partners: a SWS-challenge solution using DIANE service descriptions. In [133], pp. 139–143 (2007)Google Scholar
  122. 122.
    Küster, U., König-Ries, B.: Semantic service discovery with DIANE service descriptions. In [133], pp. 152–156 (2007)Google Scholar
  123. 123.
    Küster, U., König-Ries, B.: Service discovery using DIANE service descriptions: a solution to the SWS-challenge discovery scenarios. In [10] (2007)Google Scholar
  124. 124.
    Küster, U., Klein, C., König-Ries, B.: Discovery and mediation using the DIANE service description. In [6] (2006)Google Scholar
  125. 125.
    Küster, U., König-Ries, B., Klein, M.: Discovery and mediation using DIANE service descriptions. In [8] (2006)Google Scholar
  126. 126.
    Küster, U., König-Ries, B., Klein, M., Stern, M.: DIANE: a matchmaking-centered framework for automated service discovery, composition, binding and invocation. Int. J. Electron. Commer. (IJEC) 12(2), 41–68 (2007)CrossRefGoogle Scholar
  127. 127.
    Küster, U., Lausen, H., König-Ries, B.: Evaluation of semantic service discovery: a survey and directions for future research. In [87], pp. 41–58 (2007)Google Scholar
  128. 128.
    Küster, U., Turati, A., Zaremba, M., König-Ries, B., Cerizza, D., Della Valle, E., Brambilla, M., Ceri, S., Facca, F.M., Tziviskou, C.: Service discovery with SWE-ET and DIANE: a comparative evaluation by means of solutions to a common scenario. In [64], pp. 430–437 (2007)Google Scholar
  129. 129.
    Lawler, J.P., Howell-Barber, H.: Service-Oriented Architecture: SOA Strategy, Methodology, and Technology. Auerbach Publications, New York (2007)CrossRefGoogle Scholar
  130. 130.
    Lemcke, J., Kaiser, M., Kubczak, C., Margaria, T., Knuth, B.: Advances in Solving the Mediator Scenario with jABC and jABC/GEM. In [14, 171], Stanford Logic Group, Computer Science Department, Stanford University, pp. 89–102 (2008)Google Scholar
  131. 131.
    Lew, A., Mauch, H.: Dynamic Programming: A Computational Tool. Springer, Berlin (2006)Google Scholar
  132. 132.
    Li, W., Svärd, P.: REST-based SOA application in the cloud: a text correction service case study. In [18], pp. 84–90 (2010)Google Scholar
  133. 133.
    Li, Y., Raghavan, V.V. (eds.): 2007 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology Workshops (WI/IAT Workshops’07), IEEE (2007)Google Scholar
  134. 134.
    Liang, J., Zhang, Y., Lu, J., Sathulla, S., Chen, D., Wang, S.: A rental advising system based on service oriented architecture. In [15], pp. 184–190 (2008)Google Scholar
  135. 135.
    Lorenzoli, D., Mussino, S., Pezzé, M., Sichel, A., Tosi, D., Schilling, D.: A SOA based self-adaptive personal mobility manager. In [66], pp. 479–486 (2006)Google Scholar
  136. 136.
    Ludwig, H., Keller, A., Dan, A., King, R.P., Franck, R.: Web Service Level Agreement (WSLA) Language Specification. IBM, New York (2003). http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf
  137. 137.
    Luo, S., Xu, B., Yan, Y.: An accumulated-QoS-first search approach for semantic web service composition. In [17] (2010)Google Scholar
  138. 138.
    Ma, H., Jiang, W., Hu, S., Huang, Z., Liu, Z.: Two-phase graph search algorithm for QoS-aware automatic service composition. In [17] (2010)Google Scholar
  139. 139.
    Ma, S., Li, M., Du, W.: Service composition for GIS. In [15], pp. 168–175 (2008)Google Scholar
  140. 140.
    Makhzan, M.A., Lin, K.: Solution to a complete web service discovery and composition. In [205], pp. 455–457 (2006)Google Scholar
  141. 141.
    Mallya, A.U., Singh, M.P.: A semantic approach for designing e-business protocols. In [62], pp. 111–123 (2004)Google Scholar
  142. 142.
    Margaria, T., Winkler, C., Kubczak, C., Steffen, B., Brambilla, M., Ceri, S., Cerizza, D., Della Valle, E., Facca, F.M., Tziviskou, C.: SWS mediator with WEBML/WEBRATIO and JABC/JETI: a comparison. In [64], pp. 422–429 (2007)Google Scholar
  143. 143.
    Margaria, T., Bakera, M., Raffelt, H., Steffen, B.: Synthesizing the mediator with jABC/ABC. In [82] (2008)Google Scholar
  144. 144.
    Martin, D., Paolucci, M., McIlraith, S.A., Burstein, M., McDermott, D., McGuinness, D.L., Parsia, B., Payne, T., Sabou, M., Solanki, M., Srinivasan, N., Sycara, K.: Bringing semantics to web services: the OWL-S approach. In [62], pp. 26–42 (2004)Google Scholar
  145. 145.
    Maximilien, E.M.: Human-based semantic web services: phase 1. In [6] (2006)Google Scholar
  146. 146.
    Maximilien, E.M.: A partial solution to the semantic web services challenge problem using swashup: the ruby on rails services mashup approach. In [64], pp. 438–446 (2007)Google Scholar
  147. 147.
    McIlraith, S.A., Son, T.C.: Adapting Golog for composition of semantic web services. In [81], pp. 482–496 (2002)Google Scholar
  148. 148.
    McIlraith, S.A., Son, T.C., Zeng, H.: Semantic web services. IEEE Intell. Syst. Mag. 16(2), 46–53 (2001)CrossRefGoogle Scholar
  149. 149.
    McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.): Third International Semantic Web Conference (ISWC’04). Springer (2004)Google Scholar
  150. 150.
    Medjahed, B., Bouguettaya, A., Elmagarmid, A.K.: Composing web services on the semantic web. VLDB J.: Int. J. Very Large Data Bases 12(4), 333–351 (2003)CrossRefGoogle Scholar
  151. 151.
    Menzel, M., Warschofsky, R., Thomas, I., Willems, C., Meinel, C.: The service security lab: a model-driven platform to compose and explore service security in the cloud. In [18], pp. 115–122 (2010)Google Scholar
  152. 152.
    Michalewicz, Z., Fogel, D.B.: How to Solve It: Modern Heuristics. Springer, Berlin (2004)CrossRefGoogle Scholar
  153. 153.
    Mitra, N., Lafon, Y.: SOAP version 1.2 part 0: primer, 2nd edn. In: W3C Recommendation, W3C (2007). http://www.w3.org/TR/2007/REC-soap12-part0-20070427/
  154. 154.
    Moran, M., Vitvar, T., Zaremba, M.: Towards constraint-based composition with incomplete service descriptions. In [133], pp. 161–165 (2007)Google Scholar
  155. 155.
    Moran, M., Zaremba, M., Vitvar, T.: Service discovery and composition with WSMX for SWS challenge workshop IV. In [10] (2007)Google Scholar
  156. 156.
    Morse, J.N. (ed.) Fourth International Conference on Multiple Criteria Decision Making: Organizations, Multiple Agents With Multiple Criteria (MCDM’80). Springer (1980)Google Scholar
  157. 157.
    Nam, W., Kil, H., Lee, D.: Type-aware web service composition using Boolean satisfiability solver. In [13], pp. 331–334 (2008)Google Scholar
  158. 158.
    Nam, W., Kil, H., Lee, J.: QoS-driven web service composition using learning-based depth first search. In [95], pp. 507–510 (2009)Google Scholar
  159. 159.
    Narayanan, S., McIlraith, S.A.: Simulation, verification and automated composition of web services. In [2], pp. 77–88 (2002)Google Scholar
  160. 160.
    Navabpour, S., Ghoraie, L.S., Malayeri, A.A., Chen, J., Lu, J.: An intelligent traveling service based on SOA. In [15], pp. 191–198 (2008)Google Scholar
  161. 161.
    Nolte, A., Schrader, R.: A note on the finite time behaviour of simulated annealing. Math. Oper. Res. (MOR) 25(3), 476–484 (2000)MathSciNetCrossRefMATHGoogle Scholar
  162. 162.
    Oh, S., On, B., Larson, E.J., Lee, D.: BF*: web services discovery and composition as graph search problem. In [3], pp. 784–786 (2005)Google Scholar
  163. 163.
    Oh, S., Kil, H., Lee, D., Kumara, S.R.T.: Algorithms for web services discovery and composition based on syntactic and semantic service descriptions. In [205], pp. 433–435 (2006)Google Scholar
  164. 164.
    Oh, S., Yoo, J.J., Kil, H., Lee, D., Kumara, S.R.T.: Semantic web-service discovery and composition using flexible parameter matching. In [11], pp. 533–536 (2007)Google Scholar
  165. 165.
    Oh, S., Lee, D., Kumara, S.R.T.: Effective web service composition in diverse and large-scale service networks. IEEE Trans. Serv. Comput. (TSC) 1(1), 15–16 (2008)CrossRefGoogle Scholar
  166. 166.
    Oh, S., Lee, J., Cheong, S., Lim, S., Kim, M., Lee, S., Park, J., Noh, S., Sohn, M.M.: WSPR*: web-service planner augmented with A* algorithm. In [95], pp. 515–518 (2009)Google Scholar
  167. 167.
    Oldham, N., Thomas, C., Sheth, A.P., Verma, K.: METEOR-S web service annotation framework with machine learning classification. In [62], pp. 137–146 (2004)Google Scholar
  168. 168.
    Olmedilla, D., Lara, R., Polleres, A., Lausen, H.: Trust negotiation for semantic web services. In [62], pp. 81–95 (2004)Google Scholar
  169. 169.
    Palmonari, M., Comerio, M., Carenini, A., Cerizza, D., Panziera, L.: A solution to the logistics management scenario with the GLUE2 web service discovery engine. In [174] (2009)Google Scholar
  170. 170.
    Payne, T., Tamma, V. (eds.): AAAI fall symposium on agents and the semantic web, vol. FS-05-01. AAAI Press (2005)Google Scholar
  171. 171.
    Petrie, C.J. (ed.): Semantic web services challenge workshop, LG-2009-01, Stanford Logic Group, Computer Science Department, Stanford University (2009). http://logic.stanford.edu/reports/LG-2009-01.pdf
  172. 172.
    Petrie, C.J., Lausen, H., Zaremba, M.: SWS challenge: first year overview. In [64], pp. 407–412 (2007). http://sws-challenge.org/wiki/index.php/Special_Session_at_ICEIS2007
  173. 173.
    Petrie, C.J., Margaria, T., Küster, U., Lausen, H., Zaremba, M.: SWS challenge: status, perspectives, lessons learned so far. In [64], pp. 447–452 (2007)Google Scholar
  174. 174.
    Petrie, C.J., Küster, U., Cabral, L., Facca, F.M. (eds.): Eighth Semantic Web Services Challenge Workshop (SWSC’09). DERI, Stanford (2009). http://sws-challenge.org/wiki/index.php/Workshop_ECOWS_2009
  175. 175.
    Petrie, C.J., Margaria, T., Lausen, H., Zaremba, M. (eds.): Semantic Web Services Challenge: Results from the First Year. Semantic Web and Beyond: Computing for Human Experience. Springer (2009)Google Scholar
  176. 176.
    Pezzella, F. (ed.): Giornate di Lavoro (Entreprise Systems: Management of Technological and Organizational Changes, “Gestione del cambiamento tecnologico ed organizzativo nei sistemi d’impresa”) (AIRO’95). Associazione Italiana di Ricerca Operativa (1995)Google Scholar
  177. 177.
    Pistore, M., Traverso, P.: Automated synthesis of composite BPEL4WS web services. In [4], pp. 293–301 (2005)Google Scholar
  178. 178.
    Pokraev, S., Quartel, D.A.C., Wombacher, A.: SWS challenge. In [6] (2006)Google Scholar
  179. 179.
    Ponnekanti, S.R., Fox, A.: SWORD: a developer toolkit for web service composition. In [2] (2002)Google Scholar
  180. 180.
    Preißler, S., Habich, D., Lehnert, W.: Standing processes in service-oriented environments. In [16], pp. 115–122 (2009)Google Scholar
  181. 181.
    Quartel, D.A.C., Pokraev, S., Dirgahayu, T., Mantovaneli Pessoa, R., van Sinderen, M.: Model-driven service integration using the COSMO framework. In [14, 171], Computer Science Department, Stanford University, pp. 77–88 (2008)Google Scholar
  182. 182.
    Rainer, A., Dorn, J.: MOVE: a generic service composition framework for service oriented architectures. In [95], pp. 503–506 (2009)Google Scholar
  183. 183.
    Rajasekaran, P., Miller, J.A., Verma, K., Sheth, A.P.: Enhancing web services description and discovery to facilitate composition. In [62], pp. 55–68 (2004)Google Scholar
  184. 184.
    Raman, K., Zhang, Y., Panahi, M., Lin, K.: Customizable business process composition with query optimization. In [13], pp. 363–366 (2008)Google Scholar
  185. 185.
    Ramasamy, V.: Syntactical & semantical web services discovery and composition. In [205], pp. 439–441 (2006)Google Scholar
  186. 186.
    Rao, J., Su, X.: A survey of automated web service composition methods. In: Cardoso, J., Sheth, A.P. (eds.) Revised Selected Papers from the First International Workshop on Semantic Web Services and Web Process Composition (SWSWPC’04), pp. 43–54. Springer (2004)Google Scholar
  187. 187.
    Rao, J., Dimitrov, D., Hofmann, P., Sadeh, N.: A mixed initiative approach to semantic web service discovery and composition: SAP’s guided procedures framework. In [7], pp. 401–410 (2006)Google Scholar
  188. 188.
    Richly, S., Püschel, G., Habich, D., Götz, S.: MapReduce for scalable neural nets training. In [18], pp. 99–106 (2010)Google Scholar
  189. 189.
    Rosenberg, F., Nagl, C., Dustdar, S.: Applying distributed business rules: the VIDRE approach. In [66], pp. 471–478 (2006)Google Scholar
  190. 190.
    Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach (AIMA). Prentice Hall, Upper Saddle River (2002)Google Scholar
  191. 191.
    Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D.: HTN planning for web service composition using SHOP2. Web Semant.: Sci. Serv. Agents World Wide Web 1(4), 377–396 (2004)CrossRefGoogle Scholar
  192. 192.
    Sirin, E., Parsia, B., Hendler, J.: Template-based composition of semantic web services. In [170], pp. 85–92 (2005)Google Scholar
  193. 193.
    Srinivasan, N., Paolucci, M., Sycara, K.: An efficient algorithm for OWL-S based semantic search in UDDI. In [62], pp. 96–110 (2004)Google Scholar
  194. 194.
    Starlinger, J., Leitner, F., Valencia, A., Leser, U.: SOA-based integration of text mining services. In [16], pp. 99–106 (2009)Google Scholar
  195. 195.
    Stuckenschmidt, H.: Debugging OWL ontologies: a reality check. In [82] (2008)Google Scholar
  196. 196.
    Traverso, P., Pistore, M.: Automated composition of semantic web services into executable processes. In [149], pp. 380–394 (2004)Google Scholar
  197. 197.
    Vashishtha, H., Smit, M., Stroulia, E.: Moving text analysis tools to the cloud. In [18], pp. 107–114 (2010)Google Scholar
  198. 198.
    Wang, W., Zeng, G., Zhang, D., Huang, Y., Qiu, Y., Wang, X.: An intelligent ontology and Bayesian network based semantic mashup for tourism. In [15], pp. 128–135 (2008)Google Scholar
  199. 199.
    Wei, Y., Yue, P., Dadi, U., Min, M., Hu, C., Di, L.: Active acquisition of geospatial data products in a collaborative grid environment. In [66], pp. 455–462 (2006)Google Scholar
  200. 200.
    Weise, T.: Global Optimization Algorithms: Theory and Application. self-published (2009). http://www.it-weise.de/
  201. 201.
    Weise, T.: Web Service Challenge 2010 (2010). http://www.it-weise.de/documents/files/W2010WSC_data.rar
  202. 202.
    Weise, T., Bleul, S., Geihs, K.: Web Service Composition Systems for the Web Service Challenge: A Detailed Review. Technical Report 2007, 7, Fachbereich 16: Elektrotechnik/Informatik, University of Kassel (2007)Google Scholar
  203. 203.
    Weise, T., Bleul, S., Comes, D.E., Geihs, K.: Different approaches to semantic web service composition. In: Mellouk, A., Bi, J., Ortiz, G., Chiu, D.K.W., Popescu, M. (eds.) Third International Conference on Internet and Web Applications and Services (ICIW’08), IEEE, pp. 90–96 (2008)Google Scholar
  204. 204.
    Weise, T., Bleul, S., Kirchhoff, M., Geihs, K.: Semantic web service composition for service-oriented architectures. In [13], pp. 355–358 (2008)Google Scholar
  205. 205.
    Wombacher, A., Huemer, C., Stolze, M. (eds.): IEEE Joint Conference on E-Commerce Technology and Enterprise Computing, E-Commerce and E-Services (CEC/EEE’06), IEEE (2006)Google Scholar
  206. 206.
    Wu, Z., Gomadam, K., Ranabahu, A., Sheth, A.P., Miller, J.A.: Automatic composition of semantic web services using process mediation. In [64], pp. 453–462 (2007)Google Scholar
  207. 207.
    Xu, B., Li, T., Gu, Z., Wu, G.: SWSDS: quick web service discovery and composition in SEWSIP. In [205], pp. 449–451 (2006)Google Scholar
  208. 208.
    Yan, Y., Zheng, X.: A planning graph based algorithm for semantic web service composition. In [13], pp. 339–342 (2008)Google Scholar
  209. 209.
    Yan, Y., Xu, B., Gu, Z.: Automatic service composition using AND/OR graph. In [13], pp. 335–338 (2008)Google Scholar
  210. 210.
    Yan, Y., Xu, B., Gu, Z., Luo, S.: A QoS-driven approach for semantic service composition. In [95], pp. 523–526 (2009)Google Scholar
  211. 211.
    Yao, J., Chen, S., Wang, C., Levy, D., Zic, J.: Accountability as a service for the cloud: from concept to implementation with BPEL. In [18], pp. 91–98 (2010)Google Scholar
  212. 212.
    Yoo, J.J., Kumara, S.R.T., Lee, D.: A web service composition framework using integer programming with non-functional objectives and constraints. In [13], pp. 347–350 (2008)Google Scholar
  213. 213.
    Yu, H., Mine, T., Amamiya, M.: Towards automatic discovery of web portals semantic description of web portal capabilities. In [62], pp. 124–136 (2004)Google Scholar
  214. 214.
    Zaremba, M., Vitvar, T., Moran, M., Haselwanter, T., Sirbu, A.: WSMX discovery for SWS challenge. In [9] (2006)Google Scholar
  215. 215.
    Zaremba, M., Vitvar, T., Moran, M., Brambilla, M., Ceri, S., Cerizza, D., Della Valle, E., Facca, F.M., Tziviskou, C.: Towards semantic interoperabilty: in-depth comparison of two approaches to solving semantic web service challenge mediation tasks. In [64], pp. 413–421 (2007)Google Scholar
  216. 216.
    Zaremba, M., Herold, M., Zaharia, R., Vitvar, T.: Data and process mediation support for B2B integration. In [82] (2008)Google Scholar
  217. 217.
    Zhang, J., Nie, W., Panahi, M., Chang, Y., Lin, K.: Business process composition with QoS optimization. In [95], pp. 499–502 (2009)Google Scholar
  218. 218.
    Zhang, L, van der Aalst, W., Hung, P.C.K. (eds.): IEEE International Conference on Services Computing (SCC’07), IEEE (2007)Google Scholar
  219. 219.
    Zhang, Y., Yu, T., Raman, K., Lin, K.: Strategies for efficient syntactical and semantic web services discovery and composition. In [205], pp. 452–454 (2006)Google Scholar
  220. 220.
    Zhang, Y., Raman, K., Panahi, M., Lin, K.: Heuristic-based service composition for business processes with branching and merging. In [11], pp. 525–528 (2007)Google Scholar
  221. 221.
    Zhu, P., Zhan, D., Zhu, C., Li, D., Song, T., Huang, B.: A rich internet application based on BPEL services composition for port logistics. In [15], pp. 120–127 (2008)Google Scholar
  222. 222.
    Zirpins, C., Ortiz, G., Lamersdorf, W., Emmerich, W.: Engineering Service Compositions: First International, Workshop (WESC’05) (2005)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Nature Inspired Computation and Applications LaboratorySchool of Computer Science and Technology, University of Science and Technology of China (USTC)HefeiChina
  2. 2.University of Miami, Graduate SchoolCoral GablesUSA
  3. 3.XXXMunichGermany

Personalised recommendations