Advertisement

Nuclear Magnetic Resonance Approaches to Membrane Protein Structure

  • Stanley J. Opella
Part of the Methods in Physiology Series book series (METHPHYS)

Abstract

To understand the functions of membrane proteins requires the same high level of structural analysis that is now almost routinely applied to globular proteins by integrating results from the experimental methods of structural biology such as atomic resolution, x-ray crystallography, and multidimensional solution nuclear magnetic resonance (NMR) spectroscopy with those from molecular dynamics simulations and other calculations. Unfortunately, membrane proteins are problematic for the experimental and theoretical methods of structural biology, largely because these methods were developed with globular proteins in mind; as a result, both the breadth and depth of the structural analysis of membrane proteins lag far behind those of globular proteins. Structure determination by x-ray diffraction requires high-quality single crystals, and proteins associated with membranes are much more resistant to crystallization than water-soluble globular proteins; the multidimensional NMR methods that are so successful in determining the structures of globular proteins in solution are severely limited by the slow reorientation rates of proteins complexed with lipids; and molecular dynamics calculations of proteins were originally used with globular proteins in vacuum—including the effects of both lipid and solvent molecules in these calculations is an even more daunting task than for solvent molecules alone.

Keywords

Nuclear Magnetic Resonance Coat Protein Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance Study Nuclear Magnetic Resonance Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abragam, A. (1961) The Principles of Nuclear Magnetism. Oxford: Oxford University Press.Google Scholar
  2. Bechinger, B., Kim, Y., Chirlian, L. E., Gesell, J., Neumann, J., Montai, M., Tomich, J., Zasloff, M., and Opella S. J. (1991) Orientations of amphipathic helical peptides in membrane bilayers deter-mined by solid-state NMR spectroscopy. J. Biomol. NMR 1: 167–173.PubMedCrossRefGoogle Scholar
  3. Bechinger, B., and Opella, S. J. (1991) Flat coil probe for NMR spectroscopy of oriented membrane samples. J. Magn. Reson. 95: 585–588.Google Scholar
  4. Bevins, C. and Zasloff, M. (1990) Peptides from Frog skin. Annu. Rev. Biochem. 59: 395–414.PubMedCrossRefGoogle Scholar
  5. Blazyk, J., Hing, A., Schaefer, J., and Ferguson, M. C. (1991) Rotational-echo double-resonance (REDOR) NMR spectroscopy of the antimicrobial peptide magainin 2. J. Cell Biol. Suppl. 15G, 73.Google Scholar
  6. Bogusky, M. J., Schiksnis, R. A., Leo, G. C., and Opella, S. J. (1987) Protein backbone dynamics by solid state and solution 15N NMR spectroscopy. J. Magn. Reson. 72: 186–190.Google Scholar
  7. Bogusky, M. J., Leo, G. C., and Opella, S. J. (1988) Comparison of the dynamics of the membrane bound form of fd coat protein in micelles and in bilayers. Proteins Struct. Fund. Genet. 4: 123130.Google Scholar
  8. Boman, H. (1991) Developmental abnormalities in transgenic mice expressing a sialic acid-specific 9–0acetylesterase. Cell 65: 205.PubMedCrossRefGoogle Scholar
  9. Borgias, B., and James, T. (1988) COMATOSE, a method for constrained refinement of macromolecular structure based on two-dimensional nuclear Overhauser effect spectra. J. Magn. Reson. 79: 493512.Google Scholar
  10. Braun, W. (1987) Distance geometry and related materials for protein structure determination from NMR data. Q. Rev. Biophys. 19: 115–157.PubMedCrossRefGoogle Scholar
  11. Braun, W., Wilder, G., Lee, K., and Wuthrich, K. (1983) Conformation of glucagon in lipid-water interphase by 1H nuclear magnetic resonance. J. Mol. Biol. 169: 921–948.PubMedCrossRefGoogle Scholar
  12. Brown, L. (1979) Use of fully deuterated micelles for conformational studies of membrane proteins by high resolution 1H nuclear magnetic resonance. Biochim. Biophys. Acta 557: 135–148.PubMedCrossRefGoogle Scholar
  13. Brown, L., Braun, W., Kumar, A., and Wuthrich, K. (1982) High resolution nuclear magnetic resonance studies of the conformation and orientation of melittin bound to a lipid-water interface. Biophys. J. 37: 319–328.PubMedCrossRefGoogle Scholar
  14. Bruch, M., Mcknight, C., and Gierasch, L. (1989) Helix formation and stability in a signal sequence. Biochemistry 28: 8554–8561.PubMedCrossRefGoogle Scholar
  15. Chang, C., Blobel, G., and Model, P. (1978) Detection of prokaryotic signal peptidase in an Escherichia coli membrane fraction: endoproteolytic cleavage of nascent fl precoat protein. Proc. Natl. Acad. Sci. USA 75: 361–365.PubMedCrossRefGoogle Scholar
  16. Chirlian, L. E., and Opella, S. J. (1990) Molecular structure by solid-state NMR spectroscopy. Adv. Magn. Reson. (W. Warren, ed.), Acad. Press, NY, NY, 14: 183–202.Google Scholar
  17. Clore, G., and Gronenborn, A. (1989) Determination of three-dimensional structures of proteins and nucleic acids in solution by nuclear magnetic resonance spectroscopy, CRC Crit. Rev. Biochem. Mol. Biol. 24: 479–564.CrossRefGoogle Scholar
  18. Cross, T. A., Frey, M. H., and Opella, S. J. (1983) 15N spin exchange in a protein. J. Am. Chem. Soc. 105: 7741–7743.Google Scholar
  19. Cross, T. A., and Opella, S. J. (1980) Structural properties of fd coat protein in sodium dodecyl sulfate micelles. Biochem. Biophys. Res. Commun. 92: 478–484.PubMedCrossRefGoogle Scholar
  20. Cross, T. A., and Opella, S. J. (1983) Protein structure by solid state NMR. J. Am. Chem. Soc. 105: 306308.Google Scholar
  21. Deisenhofer, J., Epp, O., Miki, K., Huber, R., and Michel, H. (1985) Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3A resolution. Nature 318: 618.PubMedCrossRefGoogle Scholar
  22. Dohlman, H., Thorner, J., Caron, M., and Lefkowitz, R. (1991) Model systems for the study of seventransmembrane-segment receptors. Annu. Rev. Biochem. 60: 653–688.PubMedCrossRefGoogle Scholar
  23. Dunker, A., Fodor, S., and Williams, R. (1982) Lipid-dependent structural changes of an amphomorphic membrane protein. Biophys. J. 37: 201–203.PubMedCrossRefGoogle Scholar
  24. Dyson, H., and Wright, P. (1991) Defining solution conformations of small linear peptides. Annu. Rev. Biophys. Biophys. Chem. 20: 519–538.PubMedCrossRefGoogle Scholar
  25. Frey, M. H., and Opella, S. J. (1984) “C Spin exchange in amino acids and peptides. J. Am. Chem. Soc. 106: 4942–4945.Google Scholar
  26. Gullion, T., and Schaefer, J. (1989) Rotational-echo double-resonance NMR. J. Magn. Reson. 81: 196200.Google Scholar
  27. Glucksman, M., Bhattacharjee, S., and Makowski, L. (1992) Three-dimensional structure of a cloning vector. J. Mol. Biol. 226: 455–470.PubMedCrossRefGoogle Scholar
  28. Griffin, R. (1981) Solid state nuclear magnetic resonance of lipid bilayers. Methods Enzymol. 72: 108173.Google Scholar
  29. Harbison, G., Jelinski, L., Stark, R., Torchia, D., Herzfeld, J., and Griffin, R. (1984) 15N chemical shift and 15N–13C dipolar tensors for the peptide bond in [1–13C]Clycyl[15N]glycine hydrochloride monohydrate. J. Magn. Reson. 60: 79–82.Google Scholar
  30. Hagen, D., Weiner, J., and Sykes, B. (1978) Fluorotyrosine M13 coat protein: fluorine-19 nuclear magnetic resonance study of the motional properties of an integral membrane protein in phospholipid vesicles. Biochemistry 17: 3860–3866.PubMedCrossRefGoogle Scholar
  31. Hartzell, C., Whitfield, M., Oas, T., and Drobny, G. (1987) Determination of the 15N and 13C chemical shift tensors of L-[13C]Alanyl-L-[15N]alanine from the dipole-coupled powder patterns. J. Am. Chem. Soc. 109: 5966–5969.CrossRefGoogle Scholar
  32. Havel, T. (1990) The sampling properties of some distance geometry algorithms applied to unconstrained polypeptide chains: a study of 1830 independently computed conformations. Biopolymers 29: 1565–1585.PubMedCrossRefGoogle Scholar
  33. Henderson, R., Baldwin, J., Cesko, T., Zemlin, F., Beckmann, E., and Downing, K. (1990) Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J. Mol. Biol. 213: 899–929.PubMedCrossRefGoogle Scholar
  34. Henry, G., and Sykes, B. (1990) Hydrogen exchange kinetics in a membrane protein determined by 15N NMR spectroscopy: use of the INEPT experiment to follow individual amides in detergent-solubilized M13 coat protein. Biochemistry 29: 6303–6313.PubMedCrossRefGoogle Scholar
  35. Holak, T., Engstrom, A., Kraulis, P., Lindeberg, G., Bennich, H., Jones, T., Gronenborn, A., and Core, G. (1988) The solution conformation of the antibacterial peptide cecropin A: a nuclear magnetic resonance and dynamical simulated annealing study. Biochemistry 27: 7620–7629.PubMedCrossRefGoogle Scholar
  36. Ikura, M., Kay, L., and Bax A. (1990) A novel approach for sequential assignment of 1H, 13C and t5N spectra of larger proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin. Biochemistry 29: 4659–4667.PubMedCrossRefGoogle Scholar
  37. Inagaki, F., Shimada, I., Kawaguchi, K., Hirano, M., Terasawa, I., Ikura, T., and Go, N. (1989) Structure of melittin bound to perdeuterated dodecylphosphocholine micelles as studied by two-dimensional NMR and distance geometry calculations. Biochemistry 28: 5985–5991.CrossRefGoogle Scholar
  38. Keniry, M., Gutowsky, H., and Oldfield, E. (1984) Surface dynamics of the integral membrane protein bacteriorhodopsin. Nature 307: 383–386.PubMedCrossRefGoogle Scholar
  39. Kersh, J., Tomich, J., and Montai, M. (1989) The M25 transmembrane domain of the nicotinic cholinergic receptor forms ion channels in human erythrocyte membranes. Biochem. Biophys. Res. Commun. 162: 352–356.PubMedCrossRefGoogle Scholar
  40. Kühlbrandt, W., Wang, D. N., and Fujiyoshi, Y. (1994) Atomic model of plant light-harvesting complex by electronic crystallography. Nature 367: 614–621.PubMedCrossRefGoogle Scholar
  41. Lauterwein, J., Bosch, C., Brown, L., and Wuthrich, K. (1979) Physiochemical studies of the protein-lipid interactions in melittin-containing micelles. Biochim. Biophys. Acta 556: 244–264.PubMedCrossRefGoogle Scholar
  42. Lee, K., Fitton, J., and Wuthrich, K. (1987) Nuclear magnetic resonance investigation of the conformation of d-haemolysin bound to dodecylphosphocholine micelles. Biochim. Biophys. Acta. 911: 144–153.PubMedCrossRefGoogle Scholar
  43. Leo, G. C., Conago, L. A., Valentine, K. G., and Opella, S. J. (1987) Dynamics of fd coat protein in lipid bilayers. Biochemistry 26: 854–862.PubMedCrossRefGoogle Scholar
  44. Lewis, B., Harbison, G., Herzfeld, J., and Griffin, R. (1985) NMR structural analysis of a membrane protein: bacteriorhodopsin peptide backbone orientation and motion. Biochemistry 24: 46714679.Google Scholar
  45. Makowski, L. (1984) Structural diversity in filamentous bacteriophages. In: Biological Macromolecules and Assemblies, edited by A. McPherson. New York: Wiley, p. 202.Google Scholar
  46. Marion, D., Ikura, M., Tshudin, R., and A. Bax (1989) Rapid recording of 2D NMR spectra without phase cycling. Application to the study of hydrogen exchange in proteins. J. Magn. Reson. 85: 393399.Google Scholar
  47. Marvin, D., and Hohn, B. (1969) Filamentous bacterial viruses. Bacterial Rev. 33: 172–209.Google Scholar
  48. Marvin, D., and Wachtel, E. (1975) Structure and assembly of filamentous bacterial viruses. Nature 253: 19–23.PubMedCrossRefGoogle Scholar
  49. McDermott, A., Thompson, L., Winklel, C., Farrar, M., Pelletier, S., Lugtenburg, J., Herzfeld, J., and Griffin, R. (1991) Mechanism of proton pumping in bacteriorhodopsin by solid-state NMR: the protonation state of tyrosine in the light-adapted and M states. Biochemistry 30: 8366–8371.PubMedCrossRefGoogle Scholar
  50. McLaughlin, A., Cullis, P., Hemminga, M., Hoult, D., Redda, G., Ritchie, G., Seeley, P., and Richards, R. (1975) Application of 31P NMR to model and biological membrane systems. FEBS Lett. 57: 213–218.PubMedCrossRefGoogle Scholar
  51. Montal, M. (1990) Molecular anatomy and molecular design of channel proteins. FASEB J. 9: 26232635.Google Scholar
  52. Mulvey, D., King, G., Cooke, R., Doak, D., Harvey, T., and Campbell, I. (1989) High resolution 1H NMR study of the solution structure of the S4 segment of the sodium channel protein. FEBS Lett. 257: 113–117.PubMedCrossRefGoogle Scholar
  53. Nambudripad, R., Stark, W., Opella, S. J., and Makowski, L. (1991) Membrane mediated assembly of filamentous bacteriophage Pfl. Science 252: 1305–1308.PubMedCrossRefGoogle Scholar
  54. Oiki, S., Danho, W., Madison, V., and Montal, M. (1988) M25, a candidate for the structure lining the ionic channel of the nicotinic cholinergic receptor. Proc. Natl. Acad. Sci. USA 85: 8703–8707.PubMedCrossRefGoogle Scholar
  55. Oldfield, E., Kinsey, R., and Kintanar, A. (1982) Recent advances in the study of bacteriorhodopsin dynamic structure using high-field solid-state nuclear magnetic resonance spectroscopy. Methods Enzymol. 88: 310–325.CrossRefGoogle Scholar
  56. Opella, S. J. (1982) Solid state NMR of biological systems. Annu. Rev. Phys. Chem. 33: 533–549.CrossRefGoogle Scholar
  57. Opella, S. J. (1985) Protein dynamics by solid state NMR. Methods Enzymol. 17: 327–361.Google Scholar
  58. Opella, S. J., and Stewart, P. (1989) Solid-state nuclear magnetic resonance structural studies of proteins. Method Enzymol. 176: 242–275.CrossRefGoogle Scholar
  59. Opella, S. J., Stewart, P., and Valentine, K. (1987) Protein structure by solid-state NMR spectroscopy. Q. Rev. Biophys. 19: 7–49.PubMedCrossRefGoogle Scholar
  60. Opella, S. J., and Waugh, J. (1977) Two-dimensional 13C NMR of highly oriented polyethylene. J. Chem. Phys. 66: 4919–4924.CrossRefGoogle Scholar
  61. Pake, G. (1948) Nuclear resonance absorption in hydrated crystals: fine structure of the proton line. J. Chem. Phys. 16: 327–339.CrossRefGoogle Scholar
  62. Pervushin, K., Arsenieu, A., Kozhich, A. and Ivanov, U. (1991) Two-dimensional NMR study of the conformation of (34–65) bacterioopsin polypeptide in SDS micelles. J. Biomol. NMR 1: 313–322.PubMedCrossRefGoogle Scholar
  63. Raleigh, D., Levitt, M., and Griffin, R. (1988) Rotational resonance in solid state NMR. Chem. Phys. Lett. 146: 71–76.CrossRefGoogle Scholar
  64. Rees, D., Komiga, H., Yeates, T., Allen, J., and Feher, G. (1989) The bacterial photosynthetic reaction center as a model for membrane proteins. Annu. Rev. Biochem. 58: 607–633.PubMedCrossRefGoogle Scholar
  65. Rice, D., Blume, A., Herzfeld, J., Wittebort, R., Huangi, T., Das Gupta, S., and Griffin, R. (1981) Solid state NMR investigations of lipid bilayers, peptides and proteins. Biomol. Stereodynam. II: 271.Google Scholar
  66. Sanders, J., van Nuland, N., Edholm, O., and Hemminga, M. (1991) Conformation and aggregation of M13 coat protein studied by molecular dynamics. Biophys. Chem. 41: 193–202.PubMedCrossRefGoogle Scholar
  67. Schiksnis, R. A., Bogusky, M. J., Tsang, P., and Opella, S. J. (1987) Structure and dynamics of the Pfl filamentous bacteriophage coat protein in micelles. Biochemistry 26: 1373–1381.PubMedCrossRefGoogle Scholar
  68. Seelig, J., and Niederberger, W. (1974) Deuterium-labeled lipids as structural probes in liquid crystalline bilayers. A deuterium magnetic resonance study. J. Am. Chem. Soc. 96: 2069–2072.CrossRefGoogle Scholar
  69. Shon, K., and Opella, S. J. (1989) Detection of 1H homonuclear NOE between amide sites in proteins with 1H/15N heteronuclear correlation spectroscopy. J. Magn. Reson. 82: 193–197.Google Scholar
  70. Shon, K., Kim, Y., Colnago, L. A., and Opella, S. J. (1991a) NMR studies of the structure and dynamics of membrane bound bacteriophage Pfl coat protein. Science 252: 1303–1305.PubMedCrossRefGoogle Scholar
  71. Shon, K, Schrader, P., Kim, Y., Bechinger, B., Zasloff, M., and Opella, S. J. (1991) NMR structural studies of membrane bound peptides and proteins. In: Biotechnology: Bridging Research and Applications, edited by D. Kamely, A. Chakrabarty, and S. Kornguth. Dodrecht, the Netherlands: Kluwer, p. 109–124.CrossRefGoogle Scholar
  72. Shon, K., Schrader, P., Opella, S. J., Richards, J., and Tomich, J. (1989) NMR spectra of synthetic membrane bound coat protein species. In: Frontiers of NMR in Molecular Biology: UCLA Symposia on Molecular and Cellular Biology, New Series, edited by D. Live, I. Armitage, and D. Patel. New York: Alan R. Liss, p. 109–118.Google Scholar
  73. Smith, S., and Griffin, R. (1988) High-resolution solid-state NMR of proteins. Annu. Rev. Phys. Chem. 39: 511–535.PubMedCrossRefGoogle Scholar
  74. Sobol, A., Arsenieu, A., Abdulaeva, G., Musina, L., and Bystrov, V. (1992) Sequence-specific resonance assignment and secondary structure of (1–71) bacterioopsin. J. Biomol. NMR 2: 161–171.PubMedCrossRefGoogle Scholar
  75. Spiess, H. (1982) Rotation of molecules and nuclear spin relaxation. In: NMR Basic Principles and Prog-ress, edited by P. Diehl, E. Fluck, and R. Kosfeld. New York: Wiley, p. 55–214.Google Scholar
  76. Spruijt, R., and Hemminga, M. (1991) The in situ aggregational and conformational state of the major coat protein of bacteriophage M13 in phospholipid bilayers mimicking the inner membrane of host Escherichia coli. Biochemistry 30: 11147–11154.Google Scholar
  77. Spruijt, R., Wolfs, C., and Hemminga, M. (1989) Aggregation-related conformational changes of the membrane-associated coat protein of bacteriophage M13. Biochemistry 28: 9158–9165.PubMedCrossRefGoogle Scholar
  78. Teng, Q., and Cross, T. (1989) The in situ determination of the 15N chemical-shift tensor orientation in a polypeptide. J. Magn. Reson. 85: 439–447.Google Scholar
  79. Tobias, D., Klein, M., and Opella, S. J. (1993) Molecular dynamics simulation of Pf1 coat protein. Biophys. J. 64: 670–675.PubMedCrossRefGoogle Scholar
  80. Torchia, D. (1984) Solid-state NMR studies of protein internal dynamics. Annu. Rev. Biophys. Bioeng. 13: 125–144.PubMedCrossRefGoogle Scholar
  81. Weiss, M., Abele, U., Weckesser, J., Welte, W., Schultz, E., and Schulz, G. (1991) Molecular architecture and electrostatic properties of a bacterial porin. Science 254: 1627–1630.PubMedCrossRefGoogle Scholar
  82. Wennerberg, A., Cooke, R., Carlquist, M., Rigler, R., and Campbell, J. (1990) A 1H NMR study of the solution conformation of the neuropeptide galanin. Biochem. Biophys. Res. Commun. 166: 11021109.Google Scholar
  83. Wuthrich, K. (1986) NMR of Proteins and Nucleic Acids. New York: Wiley.Google Scholar
  84. Zasloff, M. (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc. Natl. Acad. Sci. USA 84: 5449–5453.PubMedCrossRefGoogle Scholar

Copyright information

© American Physiological Society 1994

Authors and Affiliations

  • Stanley J. Opella

There are no affiliations available

Personalised recommendations