Nitric Oxide in Inflammation

  • Allan M. Lefer
  • Rosario Scalia
Part of the Methods in Physiology Series book series (METHPHYS)


During the past few years, an enormous amount of research has been conducted on the vascular L-arginine/nitric oxide (NO) system. Alterations of NO production and/or bioavailability have been shown to occur both in experimental animal models (Osborne et al., 1989b; Tsao et al., 1990; Gauthier et al., 1995; Scalia et al., 1996) and in humans (Chester et al., 1990; Boger et al., 1997) in diverse settings such as hypertension, hypercholesterolemia, diabetes, ischemia-reperfusion, and heart failure.


Nitric Oxide Nitric Oxide Nitric Oxide Synthesis Nitric Oxide Donor Circulatory Shock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aoki, N., Siegfried, M. and Lefer, A. M. (1989) Anti-EDRF effect of tumor necrosis factor in isolated perfused cat carotid arteries. Am. J. Physiol. 256: H1509–1512.PubMedGoogle Scholar
  2. Aoki, N., Johnson, G. III, and Lefer, A. M. (1990) Beneficial effects of two forms of NO administration in feline splanchnic artery occlusion shock. Am. J. Physiol. 258: G275–G281.PubMedGoogle Scholar
  3. Armstead, V. E., Minchenko, A. G., Campbell, B., and Lefer, A. M. (1997a) P-selectin is up regulated in vital organs during murine traumatic shock. FASEB J. 11: 1271–1279.PubMedGoogle Scholar
  4. Armstead, V. E., Minchenko, A. G., Schuhl, R. A., Hayward, R., Nossuli, T. O., and Lefer, A. M. (1997b) Regulation of P-selectin expression in human endothelial cells by nitric oxide. Am. J. Physiol. 273: H740 — H746.PubMedGoogle Scholar
  5. Arnal, J. F., Munzel, T., Venema, R. C., James, N. L., Bai, C. L., Mitch, W. E., and Harrison, D. G. (1995) Interactions between L-arginine and L-glutamine change endothelial NO production. An effect independent of NO synthase substrate availability. J. Clin. Invest. 95: 2565–2572.PubMedCrossRefGoogle Scholar
  6. Balazy, M., Kaminski, P. M., Mao, K., Tan, J., and Wolin, M. S. (1998) S-nitroglutathione, a product of the reaction between peroxynitrite and glutathione that generates nitric oxide. J. Biol. Chem. 273: 32009–32015.PubMedCrossRefGoogle Scholar
  7. Balligand, J. L., Ungureanu, D., Kelly, R. A., Kobzik, L., Pimental, D., Michel, T., and Smith, T. W. (1993) Abnormal contractile function due to induction of nitric oxide synthesis in rat cardiac myocytes follows exposure to activated macrophage-conditioned medium. J. Clin. Invest. 91: 2314–2319.PubMedCrossRefGoogle Scholar
  8. Boger, R. H., Bode-Boger, S. M., Thiele, W., Junker, W., Alexander, K., and Frolich, J. C. (1997) Biochemical evidence for impaired nitric oxide synthesis in patients with peripheral arterial occlusive disease. Circ. 95: 2068–2074.CrossRefGoogle Scholar
  9. Bogle, R. G., Baydoun, A. R., Pearson, J. D., and Mann, G. E. (1996) Regulation of L-arginine transport and nitric oxide release in superfused porcine aortic endothelial cells. J. Physiol. (Lond.) 490: 229–241.Google Scholar
  10. Brady, A. J., Poole-Wilson, P. A., Harding, S. E., and Warren, J. B. (1992) Nitric oxide production within cardiac myocytes reduces their contractility in endotoxemia. Am. J. Physio. L 263: H1963 — H1966.Google Scholar
  11. Carey, C., Siegfried, M. R., Ma, X. L., Weyrich, A. S., and Lefer, A. M. (1992) Antishock and endothelial protective actions of a NO donor in mesenteric ischemia and reperfusion. Circ. Shock 38: 209–216.PubMedGoogle Scholar
  12. Cendan, J. C., Souba, W. W., Copeland, E. M., and Lind, D. S. (1995) Cytokines regulate endotoxin stimulation of endothelial cell arginine transport. Surgery 117: 213–219.PubMedCrossRefGoogle Scholar
  13. Chester, A. H., O’Neil, G. S., Tadjkarimi, S., Palmer, R. M., Moncada, S., and Yacoub, M. H. (1990) The role of nitric oxide in mediating endothelium-dependent relaxations in the human epicardial coronary artery. Intl. J. Cardiol. 29: 305–309.CrossRefGoogle Scholar
  14. Clancy, R. M., Leszczynska-Piziak, J., and Abramson, S. B. (1992) Nitric oxide, an endothelial cell relaxation factor, inhibits neutrophil superoxide anion production via a direct action on the NADPH oxidase. J. Clin. Invest. 90: 1116–1121.PubMedCrossRefGoogle Scholar
  15. Cobb, J. P., and Danner, R. L. (1996) Nitric oxide and septic shock. JAMA 275: 1192–1196.PubMedCrossRefGoogle Scholar
  16. Cohen, R. A., Zitnay, K. M., Haudenschild, C. C., and Cunningham, L. D. (1988) Loss of selective endothelial cell vasoactive functions caused by hypercholesterolemia in pig coronary arteries. Circ. Res. 63: 903–910.PubMedCrossRefGoogle Scholar
  17. Cooke, J. P., Singer, A. H., Tsao, P., Zera, P., Rowan, R. A., and Billingham, M. E. (1992) Antiatherogenic effects of L-arginine in the hypercholesterolemic rabbit./ Clin. Invest. 90: 11681172.Google Scholar
  18. Cordeiro, P. G., D. P., Mastorakos, Hu, Q.-Y., and Kirschner, R. E. (1997) The protective effect of L-arginine on ischemia—reperfusion injury in rat skin flaps. Plast. Reconstr. Surg. 100: 1227–1233.PubMedCrossRefGoogle Scholar
  19. Crystal, G. J., and Gurevicius, J. (1996) Nitric oxide does not modulate myocardial contractility acutely in in situ canine hearts. Am. J. Physiol. 270: H1568 — H1576.PubMedGoogle Scholar
  20. Cunha, F. Q., Assreuy, J., Moss, D. W., Rees, D., Leal, L. M., Moncada, S., Carrier, M., O'Donnell, C. A., and Liew, F. Y. (1994) Differential induction of nitric oxide synthase in various organs of the mouse during endotoxaemia: role of TNF-alpha and IL-113. ImmunoL 81: 211–215.Google Scholar
  21. Davenpeck, K. L., Gauthier, T. W., Albertine, K. H., and Lefer, A. M. (1994a) Role of P-selectin in microvascular leukocyte—endothelial interaction in splanchnic ischemia—reperfusion. Am. J. Physiol. 267: H622 — H630.PubMedGoogle Scholar
  22. Davenpeck, K. L., Gauthier, T. W., and Lefer, A. M. (1994b)Inhibition of endothelial-derived nitric oxide promotes P-selectin expression and actions in the rat microcirculation. GastroenteroL 107: 1050–1058.Google Scholar
  23. DeCaterina, C. R., Libby, P., Peng, H. B., Thannickal, V. J., Rajavashisth, T. B., Gimbrone, Shin, W. S., and Liao, J. K. (1995) Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J. Clin. Invest. 96: 60–68.Google Scholar
  24. De May, M. J., and Vanhoutte, P. M. (1983) Anoxia and endothelium-dependent reactivity of the canine femoral artery. J. Physiol. (Lund.) 335: 65–74.Google Scholar
  25. Denis, M. (1991) Tumor necrosis factor and granulocyte macrophage colony-stimulating factor stimulate human macrophages to restrict growth of virulent Mycobacterium avium and to kill avirulent M avium: killing effector mechanism depends on the generation of reactive nitrogen intermediates. J. Leuko. Biol. 49: 380–387.PubMedGoogle Scholar
  26. Eiserich, J. P., Cross., C. E., Jones, A. D., Halliwell, B., and van der Vliet, A. (1996) Formation of nitrating and chlorinating species by reaction of nitrite with hypochlorous acid: a novel mechanism for nitric oxide-mediated protein modifications. J. Biol. Chem. 271: 19199–19208.Google Scholar
  27. Eiserich, J. P., Hristova, M., Cross, C. E., Jones, A. D., Freeman, B. A., Halliwell, B., and van der Vliet, A. (1998) Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils. Nature391: 393–397.Google Scholar
  28. Fox-Robichaud, A., Payne, D., Hasan, S. U., Ostrovsky, L., Fairhead, T., Reinhardt, P., and Kubes, P. (1998). Inhaled NO as a viable antiadhesive therapy for ischemia/reperfusion injury of distal microvascular beds. J. Clin. Invest. 101: 2497–2505.PubMedCrossRefGoogle Scholar
  29. Freiman, P. C., Mitchell, G. G., Heistad, D. D., Armstrong, M. L., and Harrison, D. G. (1996) Atherosclerosis impairs endothelium-dependent vascular relaxation to acetylcholine and thrombin in primates. Circ. Res. 58: 783–789.CrossRefGoogle Scholar
  30. Frostell, C., Fratacci, M. D., Wain., J. C., Jones. R., and Zapol, W. M. (1991) Inhaled nitric oxide: a selective pulmonary vasodilator reversing hypoxic pulmonary vasocontraction. Circ. 83: 2038–2047.Google Scholar
  31. Fukumoto, Y., Shimokawa, H., Kozai, T., Kadokami, T., Kuwata, K., Yonemitsu, Y., Kuga, T., Egashira, K., Sueishi, K., and Takeshita, A. (1997) Vasculoprotective role of inducible nitric oxide synthase at inflammatory coronary lesions induced by chronic treatment with interleukin-113 in pigs in vivo. Circ. 96: 3104–3111.CrossRefGoogle Scholar
  32. Furchgott, R. F., and Vanhoutte, P. M. (1989) Endothelium-derived relaxing and contracting factors. FASEB J. 3: 2007–2018.PubMedGoogle Scholar
  33. Furchgott, R. F., and Zawadski, J. V. (1990) The obligatory role of endothelial cells on the relaxation of arterial smooth muscle by acetylcholine. Nature (Land.) 288: 373–376.CrossRefGoogle Scholar
  34. Gauthier, T. W., Davenpeck, K. L., and Lefer, A. M. (1994) Nitric oxide attenuates leukocyte—endothelial interaction via P-selectin in splanchnic ischemia—reperfusion. Am. j Physiol. 267: G562 — G568.PubMedGoogle Scholar
  35. Gauthier, T. W., Scalia, R., Murohara, T., Guo, J.-P., and Lefer, A. M. (1995) Nitric oxide protects against leukocyte—endothelium interactions in the early stages of hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 15:1652-1659.Google Scholar
  36. Grisham, M. B., Granger, D. N., and Lefer, D. J. (1998) Modulation of leukocyte—endothelial interactions by reactive metabolites of oxygen and nitrogen: relevance to ischemic heart disease. Free Rad. Biol. Med. 25: 404–433.Google Scholar
  37. Gross, S. S., and Levi, R. (1992) Tetrahydrobiopterin synthesis. An absolute requirement for cytokine-induced nitric oxide generation by vascular smooth muscle./ Biol. Chem. 267: 25722–25729.Google Scholar
  38. Groves, P. H., Lewis, M. J., Cheadle, H. A., and Penny, W. J. (1993) SIN-1 reduces platelet adhesion and platelet thrombus formation in a porcine model of balloon angioplasty. Circ. 87: 590–597.CrossRefGoogle Scholar
  39. Gryglewski, R. J., Palmer, R. M., and Moncada, S. (1986) Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature (Lond.) 320:454-456.Google Scholar
  40. Guo, J.-P., Milhoan, K. A., Tuan, R. S., and Lefer, A. M. (1994) Beneficial effect of SPM-5185, a cysteine-containing NO donor, in rat carotid artery intimal injury. Circ. Res. 75: 77–84.PubMedCrossRefGoogle Scholar
  41. Guo, J.-P., Panday, M. M., Consigny, P. M., and Lefer, A. M. (1995) Mechanisms of vascular preservation by a novel NO donor following rat carotid artery intimal injury. Am. J. Physiol. 269: H1122 — H1131.PubMedGoogle Scholar
  42. Hasebe, N., Shen, Y. T., and Vatner, S. F. (1993) Inhibition of endothelium-derived relaxing factor enhances myocardial stunning in conscious dog. Circ. 88: 2862–2871.CrossRefGoogle Scholar
  43. Hecker, M., Boese, M., Schini-Kerth, V. B., Mulsch, A., and Busse, R. (1995) Characterization of the stable L-arginine—derived relaxing factor released from cytokine-stimulated vascular smooth muscle cells as an NG-hydroxyl-L-arginine-nitric oxide adduct. Proc. Natl. Acad. Sci. USA 92: 4671–4675.PubMedCrossRefGoogle Scholar
  44. Hibbs, J. Jr. (1991) Synthesis of nitric oxide from L-arginine: a recently discovered pathway induced by cytokines with antitumour and antimicrobial activity. Res. Immunol. 142: 565–569.PubMedCrossRefGoogle Scholar
  45. Hickey, M., Sharkey, K. A., Sihota, E. G., Reinhardt, P. H., MacMicking, J. D., Nathan, C., and Kubes, P. (1997) Inducible nitric oxide synthase-deficient mice have enhanced leukocyte—endothelium interactions in endotoxemia. FASEB J. 11: 955–964.PubMedGoogle Scholar
  46. Higgs, E. A., Moncada, S., Vane, J. R., Caen, J. P., Michel, H., and Tobelem, G. (1978) Effect of prostacyclin (PG12) on platelet adhesion to rabbit arterial subendothelium. Prostaglandins 16: 17–22.PubMedCrossRefGoogle Scholar
  47. Huk, I., Nanobashvili, J., Neumayer, C., Punz, A., Mueller, M., Afkhampour, K., et al. (1997) L-arginine treatment alters the kinetics of nitric oxide and superoxide release and reduces ischemia/reperfusion injury in skeletal muscle. Circ. 96: 667–675.Google Scholar
  48. Ignarro, L. J., Buga, G. M., Wood, K. S., Byrns, R. E., and Chaudhuri, G. (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl. Acad. Sci. USA 84: 9265–9269.PubMedCrossRefGoogle Scholar
  49. Johnson, G. III, Tsao, P. S., and Lefer, A. M. (1991) Cardioprotective effects of authentic nitric oxide in myocardial ischemia with reperfusion. Crit. Care Med. 19: 244–252.PubMedCrossRefGoogle Scholar
  50. Johnson, G. III, Tsao, P. S., Mulloy, D., and Lefer, A. M. (1990) Cardioprotective effects of acidified sodium nitrite in myocardial ischemia with reperfusion. J. Pharmacol. Exp. Therap. 252: 35–41.Google Scholar
  51. Jones, S. P., Girod, W. G., Palazzo, A. J., Granger, D. N., Grisham, M. B., Jourd'Heuil, D., Huang, P. L., and Lefer, D. J. (1999) Myocardial ischemia-reperfusion injury is exacerbated in absence of endothelial cell nitric oxide synthase. Am. J Physiol. 276: H1567 — H1573.Google Scholar
  52. Kelly, R. A., Balligand, J. L., and Smith, T. W. (1996) Nitric oxide and cardiac function. Circ. Res. 79: 363–380.PubMedCrossRefGoogle Scholar
  53. Kelm, M., and Schrader, J. (1990) Control of coronary vascular tone by nitric oxide. Circ. Res. 66: 1561–1575.PubMedCrossRefGoogle Scholar
  54. Kilbourn, R. G., and Griffith, O. W. (1992) Overproduction of nitric oxide in cytokine-mediated and septic shock. J. Natl. Cancer Inst. 84: 827–831.PubMedCrossRefGoogle Scholar
  55. Klatt, P., Schmidt, K., Lehner, D., Glatter, O., Bachinger, H. P., and Mayer, B. (1995) Structural analysis of porcine brain nitric oxide synthase reveals a role for tetrahydrobiopterin and Larginine in the formation of an SDS-resistant dimer. EMBO J 14: 3687–3695.PubMedGoogle Scholar
  56. Kubes, P., Suzuki, M., and Granger, D. N. (1991) Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc. Natl. Acad. Sci. USA 88: 4651–4655.PubMedCrossRefGoogle Scholar
  57. Kubes, P., and D. N. Granger (1992) Nitric oxide modulates microvascular permeability. Am. J Physiol. 262: G575–G581.Google Scholar
  58. Kurose, I., Wolf, R., Grisham, M. B., and Granger, D. N. (1994) Modulation of ischemia/reperfusion-induced microvascular dysfunction by nitric oxide. Circ. Res. 74: 376–382.PubMedCrossRefGoogle Scholar
  59. Lefer, A. M. (1987) Interaction between myocardial depressant factor and vasoactive mediators with ischemia and shock. Am. J. Physiol. 252: R193–R205.PubMedGoogle Scholar
  60. Lefer, A. M., Tsao, P. S., Lefer, D. J., and Ma, X. L. (1991) Role of endothelial dysfunction in the pathogenesis of reperfusion injury after myocardial ischemia. FASEB J. 5: 2029–2034.PubMedGoogle Scholar
  61. Lefer, A. M., and Lefer, D. J. (1993) Pharmacology of the endothelium in ischemia-reperfusion and circulatory shock. Annu. Rev. Pharmacol. Toxicol. 33: 71–90.CrossRefGoogle Scholar
  62. Lefer, A. M., and Ma, X. L. (1993) Decreased basal nitric oxide release in hypercholesterolemia increases neutrophil adherence to rabbit coronary artery endothelium. Arterioscler. Thromb. 13: 771–776.PubMedCrossRefGoogle Scholar
  63. Lefer, A. M. (1994) Endotoxin, cytokines, and nitric oxide in shock: an editorial comment. Shock 1: 79–80.PubMedCrossRefGoogle Scholar
  64. Lefer, A. M., and Lefer, D. J. (1994) Therapeutic role of nitric oxide donors in the treatment of cardiovascular disease. Drugs of the Future 19: 665–672.Google Scholar
  65. Lefer, A. M. (1998) Nitric oxide donors in endotoxic and septic shock: Evidence against nitric oxide as a mediator of shock. Sepsis 1: 101–106.CrossRefGoogle Scholar
  66. Lefer, D. J., Nakanishi, K., Johnston, W. E., and Vinten-Johansen, J. (1993) Antineutrophil and myocardial protecting actions of a novel nitric oxide donor after acute myocardial ischemia and reperfusion of dogs. Circ. 88: 2337–2350.CrossRefGoogle Scholar
  67. Lefer, D. J., Scalia, R., Campbell, B., Nossuli, T., Hayward, R., Salamon, M., Grayson, J., and Lefer, A. M. (1997) Peroxynitrite inhibits leukocyte-endothelial cell interactions and protects against ischemia-reperfusion injury in rats. J. Clin. Invest. 99: 684–691.PubMedCrossRefGoogle Scholar
  68. Lefer, D. J., Jones, S. P., Girod, W. G., Baines, A., Grisham, M. B., Cockrell, A. S., Huang, P. L., and Scalia, R. (1999) Leukocyte-endothelial cell interactions in nitric oxide synthase deficient mice. Am. J. Physiol. 276: H1943–H1950.PubMedGoogle Scholar
  69. Lerman, A., Burnett, J. C. Jr., Higano, S. T., McKinley, L. J., and Holmes, D. R. Jr. (1998) Longterm L-arginine supplementation improves small-vessel coronary endothelial function in humans. Circ. 97: 2123–2128.CrossRefGoogle Scholar
  70. Ma, X. L., Lefer, A. M., and Zipkin, R. E. (1993) S-nitroso-N-acetylpenicillamine is a potent inhibitor of neutrophil-endothelial interaction. Endothelium 1: 31–39.CrossRefGoogle Scholar
  71. Mannick, J. B., Asano, K., Izumi, K., Kieff, E., and Stamler, J. S. (1994) Nitric oxide produced by human B lymphocytes inhibits apoptosis and Epstein-Barr virus reactivation. Cell 79: 1137 1146.Google Scholar
  72. Mellion, B. T., Ignarro, L. J., Ohlstein, E. H., Pontecorvo, E. G., Hyman, A. L., and Kadowitz, P. J. (1981) Evidence for the inhibitory role of guanosine 3’, 5’-monophosphate in ADP-induced human platelet aggregation in the presence of nitric oxide and related vasodilators. Blood 57: 946–955.PubMedGoogle Scholar
  73. Miles, A. M., Bohle, D. S., Glassbrenner, P. A., Hansert, B., Wink, D. A., and Grisham, M. B. (1996) Modulation of superoxide-dependent oxidation and hydroxylation reactions by nitric oxide. J. Biol. Chem. 271: 40–47.PubMedCrossRefGoogle Scholar
  74. Miller, M. J., and Sandoval, M. (1999) Nitric oxide. A molecular prelude to intestinal inflammation. Am. J. Physiol. 276: G795–G799.PubMedGoogle Scholar
  75. Minnard, E. A., Shou, J., Naama, H., Cech, A., Gallagher, H., and Daly, J. M. (1994) Inhibition of nitric oxide synthesis is detrimental during endotoxemia. Arch. Surg. 129: 142–148.PubMedCrossRefGoogle Scholar
  76. Moilanen, E., Vuorinen, P., Kankaanranta, H., Metsa-Ketela, T., and Vapaatalo, H. (1993) InhiNitric Oxide 469 bition by nitric oxide donors of human polymorphonuclear leucocyte functions. Br. J. Pharmacol. 109: 852–858.PubMedCrossRefGoogle Scholar
  77. Moncada, S, Palmer, R. M., and Higgs, E. A. (1989) Biosynthesis of nitric oxide from L-arginine. A pathway for the regulation of cell function and communication. Biochem. Pharmacol. 38: 1709–1715.PubMedCrossRefGoogle Scholar
  78. Moncada, S., and Palmer, R. M. (1991) Biosynthesis and actions of nitric oxide. Semin. Perinatol. 15: 16–19.PubMedGoogle Scholar
  79. Moncada, S., Palmer, R. M., and Higgs, E. A. (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43: 109–142.PubMedGoogle Scholar
  80. Moncada, S., Higgs, A., and Furchgott, R. (1997) International union of pharmacology nomenclature in nitric oxide research. Pharmacol. Rev. 49: 137–142.PubMedGoogle Scholar
  81. Moro, M. A., Darley-Usmar, V. M, Lizasoain, I., Su, Y., Knowles, R. G., Radomski, M. W., and Moncada, S. (1995) The formation of nitric oxide donors from peroxynitrite. Br. J. Pharmacol. 116: 1999–2004.PubMedCrossRefGoogle Scholar
  82. Murohara, T., Scalia, R., and Lefer, A. M. (1996) Lysophosphatidylcholine promotes P-selectin expression in platelets and endothelial cells. Possible involvement of protein kinase C activation and its inhibition by nitric oxide donors. Circ. Res. 78: 780–789.PubMedCrossRefGoogle Scholar
  83. Nakanishi, K., Vinten Johansen, J., Lefer, D. J., Zhao, Z., Fowler, W. C., III, McGee, D. S., et al. (1992) Intracoronary L-arginine during reperfusion improves endothelial function and reduces infarct size. Am. J. Physiol. 263: H1650 — H1658.PubMedGoogle Scholar
  84. Naseem, K. M., and Bruckdorfer, K. R. (1995) Hydrogen peroxide at low concentrations strongly enhances the inhibitory effect of nitric oxide on platelets. Biochem. J. 310: 149–153.PubMedGoogle Scholar
  85. Nathan, C. F., and Hibbs, J. Jr. (1991) Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr. Odin. Immunol. 3: 65–70.CrossRefGoogle Scholar
  86. Nava, E., Palmer, R. M., and Moncada, S. (1991) Inhibition of nitric oxide synthesis in septic shock: how much is beneficial? Lancet 338: 1555–1557.PubMedCrossRefGoogle Scholar
  87. Nilsson, B., Yoshida, T., Delbro, D., Andius, S., and Friman, S. (1997) Pretreatment with L-arginine reduces ischemia/reperfusion injury of the liver. Transplan. Proc. 29: 3111–3112.CrossRefGoogle Scholar
  88. Nossuli, T. O., Hayward, R., Scalia, R., and Lefer, A. M. (1997) Peroxynitrite reduces myocardial infarct size and preserves coronary endothelium after ischemia and reperfusion in cats. Circ. 96: 2317–2324.CrossRefGoogle Scholar
  89. Nossuli, T. O., Hayward, R., Scalia, R., and Lefer, A. M. (1988) Mechanisms of cardioprotection by peroxynitrite in myocardial ischemia and reperfusion injury. Am. J. Physiol. 275:HSO9-H519.Google Scholar
  90. Osborne, J. A., Lento, P. H., Siegfried, M. R., Stahl, G. L., Fusman, B., and Lefer, A. M. (1989a) Cardiovascular effects of acute hypercholesterolemia in rabbits. Reversal with lovastatin treatment. J. Clin. Invest. 83: 465–473.PubMedCrossRefGoogle Scholar
  91. Osborne, J. A., Siegman, M. J., Sedar, A. W., Mooers, S. U., and Lefer, A. M. (1989b) Lack of endothelium-dependent relaxation in coronary resistance arteries of cholesterol-fed rabbits. Am. J. PhysioL 256: C591–0597.PubMedGoogle Scholar
  92. Pabla, R., Buda, A. J., Flynn, D. M., Blesse, S. A., Shin, A. M., Curtis, M. J., and Lefer, D. J. (1996) Nitric oxide attenuates neutrophil-mediated myocardial contractile dysfunction after ischemia and reperfusion. Circ. Res. 78: 65–72.PubMedCrossRefGoogle Scholar
  93. Palmer, R. M., Ferrige, A. G., and Moncada, S. (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature (Lond.) 327: 524–526.CrossRefGoogle Scholar
  94. Pastor, C., Teisseire, B., Vicaut, E., and Payen, D. (1994) Effects of L-arginine and L-nitro-arginine treatment on blood pressure and cardiac output in a rabbit endotoxin shock model. Grit. Care Med. 22: 465–469.CrossRefGoogle Scholar
  95. Pearl, J. M., Laks, H., Drinkwater, D. C., Sorensen, T. J., Chang, P., Aharon, A. S., Byrns, R. E., and Ignarro, L. J. (1994) Loss of endothelium-dependent vasodilatation and nitric oxide release after myocardial protection with University of Wisconsin solution. J. Thorac. Cardiovasc. Surg. 107: 257–264.PubMedGoogle Scholar
  96. Pennington, D. G., Vezeridis, M. P., Geffin, G., O’Keefe, D. D., Lappas, D. G., and Daggett W. M. (1979) Quantitative effects of sodium nitroprusside on coronary hemodynamics and left ventricular function in dogs. Circ. Res. 45: 351–359.PubMedCrossRefGoogle Scholar
  97. Petros, A., Bennett, D., and Valance, P. (1991) Effect of nitric oxide synthase inhibitors on hypotension in patients with septic shock. Lancet 338: 1557–1558.PubMedCrossRefGoogle Scholar
  98. Pfeiffer, S., and Mayer, B. (1998) Lack of tyrosine nitration by peroxynitrite generated at physiological pH. J. Biol. Chem. 273: 27280–27285.PubMedCrossRefGoogle Scholar
  99. Pieper, G. M. (1997) Acute amelioration of diabetic endothelial dysfunction with a derivative of the nitric oxide synthase cofactor, tetrahydrobiopterin. J Cardiovasc. Pharmacol. 29:8-15.PubMedCrossRefGoogle Scholar
  100. Pou, S., Pou, W. S., Bredt, D. S., Snyder, S. H., and Rosen, G. M. (1992) Generation of superoxide by purified brain nitric oxide synthase. J. Biol. Chem. 267: 24173–24176.PubMedGoogle Scholar
  101. Pryor, W. A., and Squadrito, G. L. (1995) The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am. J. Physiol. 268: L699–L722.PubMedGoogle Scholar
  102. Radi, R., Beckman, J. S., Bush, K. M., and Freeman, B. A. (1991) Peroxynitrite-induced membrane lipid peroxidant: the cytotoxic potential of superoxide and nitric oxide. Arch. Biochem. Biophys. 288: 481–487.PubMedCrossRefGoogle Scholar
  103. Radomski, M. W., Palmer, R. M., and Moncada, S. (1987a) Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet 2: 1057–1058.PubMedCrossRefGoogle Scholar
  104. Radomski, M. W., Palmer, R. M., and Moncada, S. (1987b) The anti-aggregating properties of vascular endothelium: interactions between prostacyclin and nitric oxide. Br. J. Pharmacol. 92: 639–646.PubMedCrossRefGoogle Scholar
  105. Radomski, M. W., Palmer, R. M., and Moncada, S. (1987c) The role of nitric oxide and cGMP in platelet adhesion to vascular endothelium. Biochem. Biophys. Res. Commun. 148: 1482–1489.PubMedCrossRefGoogle Scholar
  106. Radomski, M. W., Palmer, R. M., and Moncada, S. (1990) An L-arginine/nitric oxide pathway present in human platelets regulates aggregation. Proc. Natl. Acad. Sci. USA 87: 5193–5197.PubMedCrossRefGoogle Scholar
  107. Robbins, R. A., Springall, D. R., Warren, J. B., Kwon, O. J., Buttery, L. D., Wilson, A. J., Adcock, I. M., Riveros-Moreno, V., Moncada, S., and Polak, J. (1994) Inducible nitric oxide synthase is increased in murine lung epithelial cells by cytokine stimulation. Biochem. Biophys. Res. Commun. 198: 835–843.PubMedCrossRefGoogle Scholar
  108. Rossaint, R., Falke, K. J., Lopez, F., Slama, K., Pison, U., and Zapol, W. M. (1993) Inhaled nitric oxide for the adult respiratory distress syndrome. N. Engl. J. Med. 328: 399–405.PubMedCrossRefGoogle Scholar
  109. Rubanyi, G. M., and Vanhoutte, P. M. (1986) Superoxide anions and hyperoxia inactivate endothelium-derived relaxing factor. Am. J. Physiol. 250: H815–H821.PubMedGoogle Scholar
  110. Scalia, R., Pearlman, S., Campbell, B., and Lefer, A. M. (1996) Time course of endothelial dysfunction and neutrophil adherence and infiltration during murine traumatic shock. Shock 6: 177–182.PubMedGoogle Scholar
  111. Scalia, R., Salamon, M. G., and Lefer, A. M. (1997) Characterization of thrombin-induced leukocyte endothelial cell interaction in the rat mesenteric microvasculature. Cardiovasc. PathobioL 1: 160–166.Google Scholar
  112. Scalia, R., Appel, J. Z., and Lefer, A. M. (1998) Leukocyte-endothelium interaction during the early stages of hypercholesterolemia in the rabbit: role of P-selectin, ICAM-1, and VCAM-1. Arterioscler. Thromb. Vase. BioL 18: 1093–1100.CrossRefGoogle Scholar
  113. Scalia, R., and Lefer, A. M. (1998) In vivo regulation of PECAM-1 activity during acute endothelial dysfunction in the rat mesenteric microvasculature. J. Leuko. Biol. 64: 163–169.PubMedGoogle Scholar
  114. Schulz, R., and Wambolt, R. (1995) Inhibition of nitric oxide synthesis protects the isolated working rabbit heart from ischaemia-reperfusion injury. Cardiovasc. Res. 30: 432–439.PubMedGoogle Scholar
  115. Siegfried, M. R., Carey, C., Ma, X. L., and Lefer, A. M. (1992a) Beneficial effects of SPM-5185, a cysteine-containing NO donor in myocardial ischemia-reperfusion. Am. J. Physiol. 263: H771–H777.PubMedGoogle Scholar
  116. Siegfried, M. R., Erhardt, J., Rider, T., Ma, X. L., and Lefer, A. M. (1992b) Cardioprotection and attenuation of endothelial dysfunction by organic nitric oxide donors in myocardial ischemiareperfusion. J. Pharmacol. Exp. Ther. 260: 668–675.PubMedGoogle Scholar
  117. Silvagno, F., Xia, H., and Bredt, D. S. (1996) Neuronal nitric-oxide synthase-mu, an alternatively spliced isoform expressed in differentiated skeletal muscle. J. Biol. Chem. 271: 11204–11208.PubMedCrossRefGoogle Scholar
  118. Shears, L. L. and Billiar, T. R., (1995) Biochemistry and synthesis of NO in sepsis. In: Role of Nitric Oxide in Sepsis and ARDS. Edited by M. P. Fink and D. Payen. pp. 14-28. Springer-Verlag, Heidelberg. Nitric Oxide 471Google Scholar
  119. Southan, G. J., Szabo, C., and Thiemermann, C. (1995) Isothioureas: potent inhibitors of nitric oxide synthases with variable isoform selectivity. Br. J. Pharmacol. 114: 510–516.PubMedCrossRefGoogle Scholar
  120. Spiecker, M., Darius, H., Kaboth, K., Hubner, F., and Liao., J. K. (1998) Differential regulation of endothelial cell adhesion molecule expression by nitric oxide donors and antioxidants. J. Leuko. Biol. 63: 732–739.PubMedGoogle Scholar
  121. Stamler, J. S., Jaraki, O., Osbourne, J., Simon, D. I., Keaney, J. F. Jr., Vital, J., Singel, D., Valen C. R., and Loscalzo, J. (1992) Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin. Proc. Natl. Acad. Sci. USA 89: 7674–7677.PubMedCrossRefGoogle Scholar
  122. Stroes, E., Kastelein, J., Cosentino, F., Erkelens, W., Weyer, R., Koomans, H., Luscher, T., and Rabelink, T. (1997) Tetrahydrobiopterin restores endothelial function in hypercholesterolemia. J. Clin. Invest. 99: 41–46.PubMedCrossRefGoogle Scholar
  123. Stuehr, D. J., Cho, H. J., Kwon, N. S., Weise, M. F., and Nathan, C. F. (1991) Purification and characterization of the cytokine-induced macrophase nitric oxide synthase: An FAD- and FMN-containing flavoprotein. Proc. Natl. Acad. Sci. USA 88: 7773–7777.PubMedCrossRefGoogle Scholar
  124. Su, Z., Blazing, M. A., Fan, D., and George, S. E. (1995) The calmodulin-nitric oxide synthase interaction. Critical role of the calmodulin latch domain in enzyme activation. J. Biol. Chem. 270: 29117–29122.PubMedCrossRefGoogle Scholar
  125. Symington, P. A., Ma, X.-L., and Lefer, A. M. (1992) Protective actions of S-nitroso-Nacetylpenicillamine (SNAP) in a rat model of hemorrhagic shock. Meth. Find. Exp. Clin. Pharmacol. 14: 789–797.Google Scholar
  126. Szabo, C., Salzman, A. L., and Ischiropoulos, H. (1995) Peroxynitrite-mediated oxidation of dihydrorhodamine 123 occurs in early stages of endotoxic and hemorrhagic shock and ischemia-reperfusion injury. FEBS Lett. 372: 229–232.PubMedCrossRefGoogle Scholar
  127. Thoenes, M., Forstermann, U., Tracey, W. R., Bleese, N. M., Nussler, A. K., Scholz, and Stein, B. (1996) Expression of inducible nitric oxide synthase in failing and non-failing human he J. Mol. Cell Cardiof 28: 165–169.Google Scholar
  128. Tiefenbacher, C. P., Chilian, W. M., Mitchell, M., and DeFily, D. V. (1996) Restoration of endothelium-dependent vasodilation after reperfusion injury by tetrahydrobiopterin. Circ. 94: 1423–1429.CrossRefGoogle Scholar
  129. Tsao, P. S., Aoki, N., Lefer, D. J., Johnson, G., and Lefer, A. M. (1990) Time course of endothelial dysfunction and myocardial injury during myocardial ischemia and reperfusion in the cat. Circ. 82: 1402–1412.CrossRefGoogle Scholar
  130. Tsao, P. S., and Lefer, A. M. (1990) Time course and mechanism of endothelial dysfunction in isolated ischemic-and hypoxic-perfused rat hearts. Am. J. Physiol. 259: H1660 — H1666.PubMedGoogle Scholar
  131. Ungureanu-Longrois, D., Balligand, J. L., Kelly, R. A., and Smith, T. W. (1995) Myocardial contractile dysfunction in the systemic inflammatory response syndrome: role of a cytokine-inducible nitric oxide synthase in cardiac myocytes. J. Mol. Cell Cardiol. 27: 155–167.PubMedCrossRefGoogle Scholar
  132. Venema, R. C., Sayegh, H. S., Kent, J. D., and Harrison, D. G. (1996) Identification, characterization, and comparison of the calmodulin-binding domains of the endothelial and inducible nitric oxide synthases. J. Biol. Chem. 271: 6435–6440.PubMedCrossRefGoogle Scholar
  133. von der Leyen, H. E., Gibbons, G. H., Morishita, R., Lewis, N. P., Zhang, L., Nakajima, M., Kaneda, Y., Cooke, J. P., and Dzau, V. J. (1995) Gene therapy inhibiting neointima vascular lesion: in vivo transfer of endothelial cell nitric oxide synthase gene. Proc. Nat. Acad. Sci. USA 92: 1137–1141.PubMedCrossRefGoogle Scholar
  134. Wang, P., Samouilov, A., Kuppasamy, P., and Zweier, J. L. (1996) Quantitation of superoxide, nitric oxide, and peroxynitrite generation in the postischemic heart. Circ. 94: I 467 [Abstract].Google Scholar
  135. Weyrich, A. S., Ma, X.-L., and Lefer, A. M. (1992) The role of L-arginine in ameliorating reperfusion injury after myocardial ischemia in the cat. Circ. 86: 279–288.CrossRefGoogle Scholar
  136. Weyrich, A. S., Ma, X.-L., Buerke, M., Murohara, T., Armstead, V. E., Lefer, A. M., Nicolas, J. M., Thomas, A. P., Lefer, D.J., and Vinten-Johansen, J. (1994) Physiological concentrations of nitric oxide do not elicit an acute negative inotropic effect in unstimulated cardiac muscle. Circ. Res. 75: 692–700.PubMedCrossRefGoogle Scholar
  137. Wizemann, T. M., Gardner, C. R., Laskin, J. D., Quinones, S., Durham, S. K., Goller, N. L., Ohnishi, S. T., and Laskin, D. L. (1994) Production of nitric oxide and peroxynitrite in the lung during acute endotoxemia. J Leuko. Biol. 56: 759–768.PubMedGoogle Scholar
  138. Worrall, N. K., Chang, K., Suau, G. M., Allison, W. S., Misko, T. P., Sullivan, P. M., Tilton, R. G., Williamson, J. R., and Ferguson., T.B.J. (1996) Inhibition of inducible nitric oxide synthase prevents myocardial and systemic vascular barrier dysfunction during early cardiac allograft rejection. Circ. Res. 78: 769–779.PubMedCrossRefGoogle Scholar
  139. Wright, C. E., Rees, D. D., and Moncada, S. (1992) Protective and pathological roles of nitric oxide in endotoxin shock. Cardiovasc. Res. 26: 48–57.PubMedCrossRefGoogle Scholar
  140. Yasmin, W., Strynadka, K. D., and Schulz, R. (1997) Generation of peroxynitrite contributes to ischemia—reperfusion injury in isolated rat hearts. Cardiovasc. Res. 33: 422–432.PubMedCrossRefGoogle Scholar

Copyright information

© American Physiological Society 2001

Authors and Affiliations

  • Allan M. Lefer
  • Rosario Scalia

There are no affiliations available

Personalised recommendations