Human-Centered Interactivity of Visualization Tools: Micro- and Macro-level Considerations

  • Kamran Sedig
  • Paul Parsons
  • Mark Dittmer
  • Robert Haworth


Visualization tools can support and enhance the performance of complex cognitive activities such as sense making, problem solving, and analytical reasoning. To do so effectively, however, a human-centered approach to their design and evaluation is required. One way to make visualization tools human-centered is to make them interactive. Although interaction allows a user to adjust the features of the tool to suit his or her cognitive and contextual needs, it is the quality of interaction that largely determines how well complex cognitive activities are supported. In this chapter, interactivity is conceptualized as the quality of interaction. As interactivity is a broad and complex construct, we categorize it into two levels: micro and macro. Interactivity at the micro level emerges from the structural elements of individual interactions. Interactivity at the macro level emerges from the combination, sequencing, and aggregate properties and relationships of interactions as a user performs an activity. Twelve micro-level interactivity elements and five macro-level interactivity factors are identified and characterized. The framework presented in this chapter can provide some structure and facilitate a systematic approach to design and evaluation of interactivity in human-centered visualization tools.


Cognitive Activity Operational Form Visualization Tool Sales Data External Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aigner, W.: Understanding the role and value of interaction: First steps. In: S. Miksch, G. Santucci (eds.) International Workshop on Visual Analytics (2011)Google Scholar
  2. 2.
    Albers, M.: Design for effective support of user intentions in information-rich interactions. Journal of Technical Writing and Communication 39(2), 177–194 (2009)CrossRefGoogle Scholar
  3. 3.
    Albers, M.: Human-information interactions with complex software. Design, User Experience, and Usability. pp. 245–254 (2011)Google Scholar
  4. 4.
    Alessi, S.M., Trollip, S.R.: Multimedia for Learning: Methods and Development. Allyn and Bacon (2001)Google Scholar
  5. 5.
    Amar, R., Eagan, J., Stasko, J.: Low-level components of analytic activity in information visualization. IEEE Symposium on Information Visualization, 2005. INFOVIS 2005. pp. 111–117 (2004)Google Scholar
  6. 6.
    Arias-Hernandez, R., Green, T., Fisher, B.: From cognitive amplifiers to cognitive prostheses: Understandings of the material basis of cognition in visual analytics. Interdisciplinary Science Reviews 37(1), 4–18 (2012)CrossRefGoogle Scholar
  7. 7.
    Brown, J., Collins, A., Duguid, P.: Situated cognition and the culture of learning. Educational researcher 18(1), 32 (1989)CrossRefGoogle Scholar
  8. 8.
    Bucy, E.: Interactivity in society: Locating an elusive concept. The Information Society 20(5), 373–383 (2004)CrossRefGoogle Scholar
  9. 9.
    Clark, A.: Microcognition: Philosophy, Cognitive Science, and Parallel Distributed Processing. Explorations in cognitive science. MIT Press (1991)Google Scholar
  10. 10.
    Clark, A.: Time and mind. The Journal of Philosophy 95(7), 354 (1998)CrossRefGoogle Scholar
  11. 11.
    Clark, A.: Supersizing the Mind: Embodiment, Action, and Cognitive Extension. Philosophy of Mind Series. Oxford University Press (2008)Google Scholar
  12. 12.
    Clark, A., Chalmers, D.: The extended mind. Analysis 58(1), 7–19 (1998)CrossRefGoogle Scholar
  13. 13.
    Crystal, A., Ellington, B.: Task analysis and human-computer interaction: Approaches, techniques, and levels of analysis. In: Tenth Americas Conference on Information Systems, pp. 1–9. New York, New York, USA (2004)Google Scholar
  14. 14.
    Dourish, P.: Where The Action Is: The Foundations Of Embodied Interaction. Bradford Books. MIT Press (2004)Google Scholar
  15. 15.
    Downes, E.J., McMillan, S.J.: Defining interactivity: A qualitative identification of key dimensions. New Media & Society 2(2), 157–179 (2000)CrossRefGoogle Scholar
  16. 16.
    Fabrikant, S.I.: Persistent problem in geographic visualization: Evidence of geovis(ual analytics) utility and usefulness. In: ICA Geovis Commission ICC2011, vol. 44, pp. 2009–2011. Paris, France (2011)Google Scholar
  17. 17.
    Fidel, R.: Human Information Interaction: An Ecological Approach to Information Behavior. MIT Press (2012)Google Scholar
  18. 18.
    Funke, J.: Complex problem solving: A case for complex cognition? Cognitive Processing 11(2), 133–42 (2010)CrossRefGoogle Scholar
  19. 19.
    Gotz, D., Zhou, M.: Characterizing users visual analytic activity for insight provenance. IEEE Symposium on VAST pp. 123–130 (2008)Google Scholar
  20. 20.
    Hang, H., Auty, S.: Children playing branded video games: The impact of interactivity on product placement effectiveness. Journal of Consumer Psychology 21(1), 65–72 (2011)CrossRefGoogle Scholar
  21. 21.
    Hannon, J., Atkins, P.: All about interactivity. Tech. rep., Victoria, Australia (2002)Google Scholar
  22. 22.
    Hegarty, M.: The cognitive science of visual-spatial displays: Implications for design. Topics in Cognitive Science 3(3), 446–474 (2011)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Hollan, J., Hutchins, E., Kirsh, D.: Distributed cognition: Toward a new foundation for human-computer interaction research. ACM Transactions on Computer-Human Interaction (TOCHI) 7(2), 174–196 (2000)Google Scholar
  24. 24.
    Hutchins, E.: Cognition in the Wild. Bradford Books. MIT Press (1995)Google Scholar
  25. 25.
    Hutchins, E., Klausen, T.: Distributed cognition in an airline cockpit. Cognition and Communication at Work pp. 15–34 (1996)Google Scholar
  26. 26.
    Jensen, J.: Interactivity: Tracking a new concept in media and communication studies. Nordicom Review 19(1), 185–204 (1998)Google Scholar
  27. 27.
    Johnson, C., Moorhead, R., Munzner, T., Pfister, H., Rheingans, P., Yoo, T.: NIH-NSF Visualization Research Challenges. Tech. rep., Los Alamitos, CA (2006)Google Scholar
  28. 28.
    Kaptelinin, V., Nardi, B.: Activity Theory in HCI. Morgan & Claypool Publishers (2012)Google Scholar
  29. 29.
    Keim, D., Kohlhammer, J., Ellis, G.: Mastering The Information Age-Solving Problems with Visual Analytics (2010)Google Scholar
  30. 30.
    Keim, D., Mansmann, F., Schneidewind, J., Thomas, J., Ziegler, H.: Visual analytics: Scope and challenges. In: Visual Data Mining: Theory, Techniques and Tools for Visual Analytics, lncs edn. Springer (2008)Google Scholar
  31. 31.
    Kiousis, S.: Interactivity: a concept explication. New Media & Society 4(3), 355–383 (2002)Google Scholar
  32. 32.
    Kirsh, D.: Interactivity and multimedia interfaces. Instructional Science 25(2), 79–96 (1997)CrossRefGoogle Scholar
  33. 33.
    Kirsh, D.: Metacognition, distributed cognition and visual design. Cognition, Education, and Communication Technology pp. 1–22 (2005)Google Scholar
  34. 34.
    Kirsh, D.: Problem solving and situated cognition. The Cambridge handbook of situated cognition pp. 264–306 (2009)Google Scholar
  35. 35.
    Kirsh, D., Maglio, P.: On distinguishing epistemic from pragmatic action. Cognitive Science: A Multidisciplinary Journal 18(4), 513–549 (1994)CrossRefGoogle Scholar
  36. 36.
    Knauff, M., Wolf, A.G.: Complex cognition: The science of human reasoning, problem-solving, and decision-making. Cognitive Processing 11(2), 99–102 (2010)CrossRefGoogle Scholar
  37. 37.
    Laine, P., Phil, L.: Explicitness and interactivity. Proceedings of the 1st international symposium on Information and communication technologies p. 426 (2003)Google Scholar
  38. 38.
    Liang, H.N., Parsons, P., Wu, H.C., Sedig, K.: An exploratory study of interactivity in visualization tools: Flow of interaction. Journal of Interactive Learning Research 21(1), 5–45 (2010)Google Scholar
  39. 39.
    Liang, H.N., Sedig, K.: Can interactive visualization tools engage and support pre-university students in exploring non-trivial mathematical concepts? Computers & Education 54(4), 972–991 (2010)CrossRefGoogle Scholar
  40. 40.
    Liang, H.N., Sedig, K.: Role of interaction in enhancing the epistemic utility of 3D mathematical visualizations. International Journal of Computers for Mathematical Learning 15(3), 191–224 (2010)CrossRefGoogle Scholar
  41. 41.
    Liu, Y., Shrum, L.J.: A dual-process model of interactivity effects. Journal of Advertising 38(2), 53–68 (2009)CrossRefGoogle Scholar
  42. 42.
    Liu, Z., Nersessian, N., Stasko, J.: Distributed cognition as a theoretical framework for information visualization. IEEE transactions on visualization and computer graphics 14(6), 1173–80 (2008)CrossRefGoogle Scholar
  43. 43.
    Liu, Z., Stasko, J.: Mental models, visual reasoning and interaction in information visualization: a top-down perspective. IEEE transactions on visualization and computer graphics 16(6), 999–1008 (2010)CrossRefGoogle Scholar
  44. 44.
    Mann, S.: Conversation as a basis for interactivity. In: Proceedings of the 15th Annual Conference of the National Advisory Committee on Computing Qualifications, pp. 281–288. Hamilton, NZ (2002)Google Scholar
  45. 45.
    Marchionini, G.: Information Concepts: From Books to Cyberspace Identities (2010)Google Scholar
  46. 46.
    McClelland, J.L.: Emergence in cognitive science. Topics in Cognitive Science 2(4), 751–770 (2010)CrossRefGoogle Scholar
  47. 47.
    Mirel, B.: Interaction Design for Complex Problem Solving: Developing Useful and Usable Software. The Morgan Kaufmann Series in Interactive Technologies. Morgan Kaufmann (2004)Google Scholar
  48. 48.
    Nardi, B.: Studying context: A comparison of activity theory, situated action models, and distributed cognition. Context and consciousness: Activity theory and human-computer interaction pp. 69–102 (1996)Google Scholar
  49. 49.
    Parsons, P., Sedig, K.: Common visualizations: Their cognitive utility (this volume)Google Scholar
  50. 50.
    Parsons, P., Sedig, K.: Distribution of information processing while performing complex cognitive activities with visualization tools (this volume)Google Scholar
  51. 51.
    Parsons, P., Sedig, K.: Properties of visual representations: Improving the quality of human-information interaction in complex cognitive activities. Journal of the American Society for Information Science and Technology (under review)Google Scholar
  52. 52.
    Pike, W.a., Stasko, J., Chang, R., OConnell, T.A.: The science of interaction. Information Visualization 8(4), 263–274 (2009)Google Scholar
  53. 53.
    Pohl, M., Wiltner, S., Miksch, S., Aigner, W., Rind, A.: Analysing interactivity in information visualisation. KI - Künstliche Intelligenz 26(2), 151–159 (2012)CrossRefGoogle Scholar
  54. 54.
    Purchase, H., Andrienko, N., Jankun-Kelly, T., Ward, M.: Theoretical foundations of information visualization. In: A. Kerren, J.T. Stasko, J.D. Fekete, C. North (eds.) Information Visualization: Human-Centered Issues and Perspectives, Lecture Notes in Computer Science, vol. 4950, pp. 46–64. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)CrossRefGoogle Scholar
  55. 55.
    Scaife, M., Rogers, Y.: External cognition: how do graphical representations work? International Journal of Human-Computer Studies 45(2), 185–213 (1996)CrossRefGoogle Scholar
  56. 56.
    Scholtz, J.: Beyond usability: Evaluation aspects of visual analytic environments. In: IEEE Symposium on Visual Analytics Science and Technology, pp. 145–150 (2006)Google Scholar
  57. 57.
    Sedig, K.: Need for a prescriptive taxonomy of interaction for mathematical cognitive tools. Lecture Notes in Computer Science pp. 1030–1037 (2004)Google Scholar
  58. 58.
    Sedig, K.: From play to thoughtful learning: A design strategy to engage children with mathematical representations. Journal of Computers in Mathematics and Science Teaching 27(1), 65–101 (2008)Google Scholar
  59. 59.
    Sedig, K., Klawe, M., Westrom, M.: Role of interface manipulation style and scaffolding on cognition and concept learning in learnware. ACM Transactions on Computer-Human Interaction (TOCHI) 8(1), 34–59 (2001)Google Scholar
  60. 60.
    Sedig, K., Liang, H.N.: Interactivity of visual mathematical representations: Factors affecting learning and cognitive processes. Journal of Interactive Learning Research 17(2), 179 (2006)Google Scholar
  61. 61.
    Sedig, K., Liang, H.N.: On the design of interactive visual representations: Fitness of interaction. In: C. Seale, J. Montgomerie (eds.) World Conference on Educational Multimedia, Hypermedia and Telecommunications, pp. 999–1006. AACE (2007)Google Scholar
  62. 62.
    Sedig, K., Liang, H.N.: Learner-information interaction: A macro-level framework characterizing visual cognitive tools. Journal of Interactive Learning Research 19(1), 147–173 (2008)Google Scholar
  63. 63.
    Sedig, K., Parsons, P.: Interaction design for complex cognitive activities with visual representations: A pattern-based approach. AIS Transactions on Human-Computer Interaction (2013, to appear)Google Scholar
  64. 64.
    Sedig, K., Rowhani, S., Liang, H.N.: Designing interfaces that support formation of cognitive maps of transitional processes: an empirical study. Interacting with Computers 17(4), 419–452 (2005)CrossRefGoogle Scholar
  65. 65.
    Sedig, K., Rowhani, S., Morey, J., Liang, H.N.: Application of information visualization techniques to the design of a mathematical mindtool: A usability study. Information Visualization 2(3), 142–159 (2003)CrossRefGoogle Scholar
  66. 66.
    Sedig, K., Sumner, M.: Characterizing interaction with visual mathematical representations. International Journal of Computers for Mathematical Learning 11(1), 1–55 (2006)CrossRefGoogle Scholar
  67. 67.
    Shneiderman, B.: The eyes have it: A task by data type taxonomy. Tech. rep., University of Maryland, College Park (1996)Google Scholar
  68. 68.
    Thomas, J., Cook, K.: Illuminating the path: The research and development agenda for visual analytics. IEEE Press (2005)Google Scholar
  69. 69.
    Ware, C.: Visual Thinking for Design. Morgan Kaufmann Series in Interactive Technologies. Morgan Kaufmann (2008)Google Scholar
  70. 70.
    van Wijk, J.J.: Views on visualization. IEEE transactions on visualization and computer graphics 12(4), 421–32 (2006)CrossRefGoogle Scholar
  71. 71.
    Yi, J., Kang, Y., Stasko, J., Jacko, J.: Toward a deeper understanding of the role of interaction in information visualization. IEEE Transactions on Visualization and Computer Graphics 13(6), 1224–1231 (2007)CrossRefGoogle Scholar
  72. 72.
    Yoo, W.S., Lee, Y., Park, J.: The role of interactivity in e-tailing: Creating value and increasing satisfaction. Journal of Retailing and Consumer Services 17(2), 89–96 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Kamran Sedig
    • 1
  • Paul Parsons
    • 2
  • Mark Dittmer
    • 2
  • Robert Haworth
    • 2
  1. 1.Computer Science & Information and Media StudiesWestern UniversityLondonCanada
  2. 2.Computer ScienceWestern UniversityLondonCanada

Personalised recommendations