Visual Analysis of Eye Tracking Data



Eye tracking has become a valuable approach to evaluate visualization techniques in a user centered design process. Apart from just relying on task accuracies and completion times, eye movements can additionally be recorded to later study visual task solution strategies and the cognitive workload of study participants. During an eye tracking experiment many data sets are recorded. Standard techniques to analyze this eye tracking data are heat map and scan path visualizations. However, it still requires a high effort to analyze scan path trajectory data to find common task solution strategies among the study participants. In this chapter we discuss three existing methodologies for analyzing the vast amount of eye tracking data from a visualization and visual analytics perspective. These three approaches are a classical static visualization, visual analytics techniques and finally a software prototype, which helps the user to manage, view and analyze the recorded data in a simple interactive way.


  1. 1.
    Andrienko, G., Andrienko, N., Burch, M., Weiskopf, D.: Visual analytics methodology for eye movement studies. Visualization and Computer Graphics, IEEE Transactions on 18(12), 2889–2898 (2012)CrossRefGoogle Scholar
  2. 2.
    Andrienko, G.L., Andrienko, N.V., Bak, P., Keim, D.A., Kisilevich, S., Wrobel, S.: A conceptual framework and taxonomy of techniques for analyzing movement. Journal of Visual Languages and Computing 22(3), 213–232 (2011)CrossRefGoogle Scholar
  3. 3.
    Aula, A., Majaranta, P., Raiha, K.J.: Eye-tracking reveals the personal styles for search result evaluation. Ifip International Federation For Information Processing 3585, 1058–1061 (2005)Google Scholar
  4. 4.
    Bojko, A.: Informative or misleading? Heatmaps deconstructed. In: International Conference on Human-Computer Interaction, pp. 30–39 (2009)Google Scholar
  5. 5.
    Burch, M., Konevtsova, N., Heinrich, J., Hoeferlin, M., Weiskopf, D.: Evaluation of traditional, orthogonal, and radial tree diagrams by an eye tracking study. Visualization and Computer Graphics, IEEE Transactions on 17(12), 2440–2448 (2011)CrossRefGoogle Scholar
  6. 6.
    Çöltekin, A., Fabrikant, S.I., Lacayo, M.: Exploring the efficiency of users’ visual analytics strategies based on sequence analysis of eye movement recordings. International Journal of Geographical Information Science 24(10), 1559–1575 (2010)CrossRefGoogle Scholar
  7. 7.
    Chen, C., Yu, Y.: Empirical studies of information visualization: a meta-analysis. Int. J. Hum.-Comput. Stud. 53(5), 851–866 (2000)MATHCrossRefGoogle Scholar
  8. 8.
    Goldberg, J.H., Helfman, J.I.: Comparing information graphics: a critical look at eye tracking. In: Proceedings of the 3rd BELIV’10 Workshop: BEyond time and errors: novel evaLuation methods for Information Visualization, BELIV ’10, pp. 71–78. ACM, New York, NY, USA (2010)Google Scholar
  9. 9.
    Goldberg, J.H., Kotval, X.P.: Computer interface evaluation using eye movements: methods and constructs. International Journal of Industrial Ergonomics 24(6), 631–645 (1999)CrossRefGoogle Scholar
  10. 10.
    Guan, Z., Cutrell, E.: An eye tracking study of the effect of target rank on web search. In: Proceedings of the SIGCHI conference on Human factors in computing systems, CHI ’07, pp. 417–420. ACM, New York, NY, USA (2007)Google Scholar
  11. 11.
    Jacob, R.J.K., Karn, K.S.: Eye Tracking in Human-Computer Interaction and Usability Research: Ready to Deliver the Promises. The Mind’s eye: Cognitive The Mind’s Eye: Cognitive and Applied Aspects of Eye Movement Research pp. 573–603 (2003)Google Scholar
  12. 12.
    Keim, D.A., Mansmann, F., Schneidewind, J., Thomas, J., Ziegler, H.: Visual analytics: Scope and challenges. In: Visual Data Mining, pp. 76–90 (2008)Google Scholar
  13. 13.
    Lohmann, S., Ziegler, J., Tetzlaff, L.: Comparison of tag cloud layouts: Task-related performance and visual exploration. In: Proceedings of the 12th IFIP TC 13 International Conference on Human-Computer Interaction: Part I, INTERACT ’09, pp. 392–404. Springer-Verlag, Berlin, Heidelberg (2009)Google Scholar
  14. 14.
    Plaisant, C.: The challenge of information visualization evaluation. In: Proceedings of the working conference on Advanced visual interfaces, AVI ’04, pp. 109–116. ACM, New York, NY, USA (2004)Google Scholar
  15. 15.
    Ponsoda, V., Scott, D., Findlay, J.: A probability vector and transition matrix analysis of eye movements during visual search. Acta Psychologica 88(2), 167–185 (1995)CrossRefGoogle Scholar
  16. 16.
    Poole, A., Ball, L.J.: Eye Tracking in Human-Computer Interaction and Usability Research: Current Status and Future Prospects, vol. Encyclopedia of HCI. Pennsylvania: Idea Group, Inc (2005)Google Scholar
  17. 17.
    Raschke, M., Chen, X., Ertl, T.: Parallel scan-path visualization. In: Proceedings of the Symposium on Eye Tracking Research and Applications, ETRA ’12, pp. 165–168. ACM, New York, NY, USA (2012)Google Scholar
  18. 18.
    Roberts, J.C.: State of the art: Coordinated & multiple views in exploratory visualization. In: International Conference on Coordinated and Multiple Views in Exploratory Visualization, pp. 61–71 (2007)Google Scholar
  19. 19.
    Rosenholtz, R., Li, Y., Mansfield, J., Jin, Z.: Feature congestion: a measure of display clutter. In: Proceedings of the Conference on Human Factors in Computing Systems (CHI), pp.761–770 (2005)Google Scholar
  20. 20.
    Shneiderman, B.: The eyes have it: A task by data type taxonomy for information visualizations. In: Proceedings of the 1996 IEEE Symposium on Visual Languages, pp. 336–. IEEE Computer Society, Washington, DC, USA (1996)Google Scholar
  21. 21.
    Thomas, J., Cook, K.: Illuminating the Path. IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  22. 22.
    Tory, M., Staub-French, S.: Qualitative analysis of visualization: a building design field study. In: Proceedings of the 2008 Workshop on BEyond time and errors: novel evaLuation methods for Information Visualization, BELIV ’08, pp. 7:1–7:8. ACM, New York, NY, USA (2008)Google Scholar
  23. 23.
    Tsang, H.Y., Tory, M., Swindells, C.: eSeeTrack–visualizing sequential fixation patterns. IEEE Transactions on Visualization and Computer Graphics 16(6), 953–62 (2010)CrossRefGoogle Scholar
  24. 24.
    Tversky, B., Morrison, J.B., Bétrancourt, M.: Animation: can it facilitate? International Journal of Human-Computer Studies 57(4), 247–262 (2002)CrossRefGoogle Scholar
  25. 25.
    Yi, J.S., ah Kang, Y., Stasko, J.T., Jacko, J.A.: Toward a deeper understanding of the role of interaction in information visualization. IEEE Transactions on Visualization and Computer Graphics 13(6), 1224–1231 (2007)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Michael Raschke
    • 1
  • Tanja Blascheck
    • 1
  • Michael Burch
    • 2
  1. 1.Institute for Visualization and Interactive SystemsUniversity of StuttgartStuttgartGermany
  2. 2.Postdoctoral Researcher of Computer Science, Visualization Research Center (VISUS)University of StuttgartStuttgartGermany

Personalised recommendations