Advertisement

Cortical Mapping of 3D Optical Topography in Infants

  • Maria D. Papademetriou
  • John Richards
  • Teresa Correia
  • Anna Blasi
  • Declan G. Murphy
  • Sarah Lloyd-Fox
  • Mark H. Johnson
  • Clare E. Elwell
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 789)

Abstract

Precise localisation of cortical activation in the early development of the infant brain remains unclear. It is challenging to co-register haemodynamic responses during functional activation in infants with the underlying anatomy of the brain. We used a multispectral imaging algorithm to reconstruct 3D optical topographic images of haemodynamic responses in an infant during voice processing. In this chapter, we present a method for co-registering 3D optical topography images reconstructed from functional activation data in infants onto anatomical brain images obtained from MRI structurals of the individual infants.

Keywords

Haemodynamic Response Chromophore Concentration Finite Element Method Mesh Optical Topography Voice Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by a grant from the Simons Foundation (SFARI 201287 M.J) and the National Institutes of Health, NICHD, R37 HD19842.

References

  1. 1.
    Lloyd-Fox S, Blasi A, Elwell CE (2010) Illuminating the developing brain: the past, present and future of functional near infrared spectroscopy. Neurosci Biobehav Rev 34(3):269–284CrossRefPubMedGoogle Scholar
  2. 2.
    Lloyd-Fox S, Blasi A, Volein A, Everdell N, Elwell CE, Johnson MH (2009) Social perception in infancy: a near infrared spectroscopy study. Child Dev 80(4):986–999CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Blasi A, Lloyd-Fox S, Everdell N et al (2007) Investigation of depth dependent changes in cerebral haemodynamics during face perception in infants. Phys Med Biol 52(23):6849–6864CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Lloyd-Fox S, Blasi A, Mercure E, Elwell CE, Johnson MH (2011) The emergence of cerebral specialisation for the human voice over the first months of life. Soc Neurosci 7:317–330CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Taga G, Asakawa A, Maki A, Konishi Y, Koizumi H (2003) Brain imaging in the awake infants by near infra-red optical topography. Proc Natl Acad Sci USA 100(19):10722–10727CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Everdell NL, Gibson AP, Tullis IDC, Vaithianathan T, Hebden JC, Delpy DT (2005) A frequency multiplexed near-infrared topography system for imaging functional activation in the brain. Rev Sci Instrum 76:093705CrossRefGoogle Scholar
  7. 7.
    Correia T, Lloyd-Fox S, Everdell N et al (2012) Three-dimensional optical topography of brain activity in infants watching videos of human movement. Phys Med Biol 57(5):1135–1146CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Arridge SR, Hebden JC, Schweiger M et al (2000) A method for three dimensional time-resolved optical tomography. Int J Imaging Syst Technol 11(1):2–11CrossRefGoogle Scholar
  9. 9.
    Schöberl J (1997) NETGEN an advancing front 2D/3D-mesh generator based on abstract rules. Comput Vis Sci 1(1):41–52CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Maria D. Papademetriou
    • 1
  • John Richards
    • 2
  • Teresa Correia
    • 1
  • Anna Blasi
    • 3
    • 4
  • Declan G. Murphy
    • 4
  • Sarah Lloyd-Fox
    • 3
  • Mark H. Johnson
    • 3
  • Clare E. Elwell
    • 1
  1. 1.Biomedical Optics Research Laboratory, Medical Physics and BioengineeringUniversity College LondonLondonUK
  2. 2.Department of PsychologyUniversity of South CarolinaColumbiaUSA
  3. 3.Centre for Brain and Cognitive DevelopmentBirkbeck CollegeLondonUK
  4. 4.Department of Neurodevelopmental Science, Institute of PsychiatryKings CollegeLondonUK

Personalised recommendations