The Effect of Inner Speech on Arterial CO2 and Cerebral Hemodynamics and Oxygenation: A Functional NIRS Study

Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 789)

Abstract

The aim of the present study was (i) to investigate the effect of inner speech on cerebral hemodynamics and oxygenation, and (ii) to analyze if these changes could be the result of alternations of the arterial carbon dioxide pressure (PaCO2). To this end, in seven adult volunteers, we measured changes of cerebral absolute [O2Hb], [HHb], [tHb] concentrations and tissue oxygen saturation (StO2) (over the left and right anterior prefrontal cortex (PFC)), as well as changes in end-tidal CO2 (PETCO2), a reliable and accurate estimate of PaCO2. Each subject performed three different tasks (inner recitation of hexameter (IRH) or prose (IRP) verses) and a control task (mental arithmetic (MA)) on different days according to a randomized crossover design. Statistical analysis was applied to the differences between pre-baseline, two tasks, and four post-baseline periods. The two brain hemispheres and three tasks were tested separately. During the tasks, we found (i) PETCO2 decreased significantly (p < 0.05) during the IRH ( ~ 3 mmHg) and MA ( ~ 0.5 mmHg) task. (ii) [O2Hb] and StO2 decreased significantly during IRH ( ~ 1.5 μM; ~ 2 %), IRP ( ~ 1 μM; ~ 1.5 %), and MA ( ~ 1 μM; ~ 1.5 %) tasks. During the post-baseline period, [O2Hb] and [tHb] of the left PFC decreased significantly after the IRP and MA task ( ~ 1 μM and ~ 2 μM, respectively). In conclusion, the study showed that inner speech affects PaCO2, probably due to changes in respiration. Although a decrease in PaCO2 is causing cerebral vasoconstriction and could potentially explain the decreases of [O2Hb] and StO2 during inner speech, the changes in PaCO2 were significantly different between the three tasks (no change in PaCO2 for MA) but led to very similar changes in [O2Hb] and StO2. Thus, the cerebral changes cannot solely be explained by PaCO2.

Notes

Acknowledgments 

We thank all subjects and the arts speech therapist Andrea Klapproth for their participation in this study, Rachel Folkes for proofreading of the manuscript, and the numerous participants of the ISOTT conferences 2010, 2011, and 2012 for their stimulating discussions about CO2 and cerebral hemodynamics/oxygenation.

References

  1. 1.
    Bettermann H, von Bonin D, Frühwirth M, Cysarz D, Moser M (2002) Effects of speech therapy with poetry on heart rate rhythmicity and cardiorespiratory coordination. Int J Cardiol 84(1):77–88PubMedCrossRefGoogle Scholar
  2. 2.
    von Bonin D, Frühwirth M, Heuser P, Moser M (2001) Effects of speech therapy with poetry on heart rate variability and well-being. Forsch Komplementarmed Klass Naturheilkd 8(3):144–160CrossRefGoogle Scholar
  3. 3.
    Cysarz D, von Bonin D, Lackner H, Heusser P, Moser M, Bettermann H (2004) Oscillations of heart rate and respiration synchronize during poetry recitation. Am J Physiol Heart Circ Physiol 287(2):H579–H587PubMedCrossRefGoogle Scholar
  4. 4.
    Scholkmann F, Gerber U, Wolf M, Wolf U (2012) End-tidal CO2: an important parameter for a correct interpretation in functional brain studies using speech tasks. Neuroimage 66:71–79Google Scholar
  5. 5.
    Wolf M, von Bonin D, Wolf U (2011) Speech therapy changes blood circulation and oxygenation in the brain and muscle: a near-infrared spectrophotometry study. Adv Exp Med Biol 701:21–25PubMedGoogle Scholar
  6. 6.
    Wolf U, Scholkmann F, Rosenberger R, Wolf M, Nelle M (2011) Changes in hemodynamics and tissue oxygenation saturation in the brain and skeletal muscle induced by speech therapy – a near-infrared spectroscopy study. Sci World J 11:1206–1215CrossRefGoogle Scholar
  7. 7.
    Weinger MB, Brimm JE (1987) End-tidal carbon dioxide as a measure of arterial carbon dioxide during intermittent mandatory ventilation. J Clin Monit 3(2):73–79PubMedCrossRefGoogle Scholar
  8. 8.
    Scholkmann F, Spichtig S, Muehlemann T (2010) How to detect and reduce movement artifacts in near-infrared imaging using moving standard deviation and spline interpolation. Physiol Meas 31(5):649–662PubMedCrossRefGoogle Scholar
  9. 9.
    Buxton RB (2012) Dynamic models of BOLD contrast. Neuroimage 62(2):953–961PubMedCrossRefGoogle Scholar
  10. 10.
    Szabo K, Lako E, Juhasz T, Rosengarten B, Csiba L, Olah L (2011) Hypocapnia induced vasoconstriction significantly inhibits the neurovascular coupling in humans. J Neurol Sci 309(1–2):58–62PubMedCrossRefGoogle Scholar
  11. 11.
    Grubb RL, Raichle ME, Eichling JO, Ter-Pogossian MM (1974) The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time. Stroke 5(5):630–639PubMedCrossRefGoogle Scholar
  12. 12.
    Sullivan RM, Gratton A (2002) Prefrontal cortical regulation of hypothalamic-pituitary-adrenal function in the rat and implications for psychopathology: side matters. Psychoneuroendocrinology 27(1–2):99–114PubMedCrossRefGoogle Scholar
  13. 13.
    Buijs RM, Van Eden CG (2000) The integration of stress by the hypothalamus, amygdala and prefrontal cortex: balance between the autonomic nervous system and the neuroendocrine system. Prog Brain Res 126:117–132PubMedGoogle Scholar
  14. 14.
    Koechlin E, Hyafil A (2007) Anterior prefrontal function and the limits of human decision-making. Science 318(5850):594–598PubMedCrossRefGoogle Scholar
  15. 15.
    Simons CJP, Tracy DK, Sanghera KK et al (2010) Functional magnetic resonance imaging of inner speech in schizophrenia. Biol Psychiatry 67(3):232–237PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Biomedical Optics Research Laboratory, Division of NeonatologyUniversity Hospital ZurichZurichSwitzerland
  2. 2.Institute of Complementary MedicineUniversity of BernBernSwitzerland

Personalised recommendations