Pullback Attractors for NonAutonomous Dynamical Systems

  • María AnguianoEmail author
  • Tomás Caraballo
  • José Real
  • José Valero
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 47)


We study a nonautonomous reaction-diffusion equation with zero Dirichlet boundary condition, in an unbounded domain containing a nonautonomous forcing term taking values in the space H −1, and with a continuous nonlinearity which does not ensure uniqueness of solution. Using results of the theory of set-valued nonautonomous (pullback) dynamical systems, we prove the existence of minimal pullback attractors for this problem. We ensure that the pullback attractors are connected and also establish the relation between these attractors.


Pullback attractor Non-autonomous reaction-diffusion equation Set-valued dynamical system Unbounded domain 


  1. 1.
    Anguiano, M.: Atractores para EDP parabólicas no lineales y no autónomas en dominios no acotados. Ph.D. Dissertation, Universidad de Sevilla (2011)Google Scholar
  2. 2.
    Anguiano, M., Caraballo, T., Real, J.: Existence of pullback attractor for a reaction-diffusion equation in some unbounded domains with non-autonomous forcing term in H −1. Int. J. Bifurcat. Chaos 20(9), 2645–2656 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Anguiano, M., Caraballo, T., Real, J.: An exponential growth condition in H 2 for the pullback attractor of a non-autonomous reaction-diffusion equation. Nonlinear Anal. 72(11), 4071–4076 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Anguiano, M., Caraballo, T., Real, J., Valero, J.: Pullback attractors for reaction-diffusion equations in some unbounded domains with an H −1-valued non-autonomous forcing term and without uniqueness of solutions. Discret. Contin. Dyn. Syst. Ser. B 14(2), 307–326 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Anguiano, M., Kloeden, P.E., Lorenz, T.: Asymptotic behaviour of nonlocal reaction-diffusion equations. Nonlinear Anal. 73(9), 3044–3057 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Caraballo, T., Kloeden, P.E.: Non-autonomous attractors for integro-differential evolution equations. Discret. Contin. Dyn. Syst. Ser. S 2(1), 17–36 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Caraballo, T., Langa, J.A., Melnik, V.S., Valero, J.: Pullback attractors of nonautonomous and stochastic multivalued dynamical systems. Set Valued Anal. 11, 153–201 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Caraballo, T., Lukaszewicz, G., Real, J.: Pullback attractors for asymptotically compact non-autonomous dynamical systems. Nonlinear Anal. 64, 484–498 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Caraballo, T., Lukaszewicz, G., Real, J.: Pullback attractors for non-autonomous 2D Navier-Stokes equations in unbounded domains. C. R. Math. Acad. Sci. Paris 342, 263–268 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Crauel, H., Debussche, A., Flandoli, F.: Random attractors. J. Dynam. Differ. Equ. 9(2), 307–341 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Iovane, G., Kapustyan, A.V., Valero, J.: Asymptotic behaviour of reaction-diffusion equations with non-damped impulsive effects, Nonlinear Anal. 68, 2516–2530 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Marín-Rubio, P., Real, J.: On the relation between two different concepts of pullback attractors for non-autonomous dynamical systems. Nonlinear Anal. 71, 3956–3963 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Morillas, F., Valero, J.: Attractors for reaction-diffusion equations in R N with continuous nonlinearity. Asymptotic Anal. 44, 111–130 (2005)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Morillas, F., Valero, J.: On the Kneser property for reaction-diffusion systems on unbounded domains. Topol. Appl. 156, 3029–3040 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • María Anguiano
    • 1
    Email author
  • Tomás Caraballo
    • 1
  • José Real
    • 1
  • José Valero
    • 2
  1. 1.Dpto. Ecuaciones Diferenciales y Análisis NuméricoUniversidad de SevillaSevillaSpain
  2. 2.Dpto. Estadística y Matemática AplicadaUniversidad Miguel HernándezElcheSpain

Personalised recommendations