Some of My Favorite Problems and Results

  • Paul Erdős


Problems have always been an essential part of my mathematical life. A well chosen problem can isolate an essential difficulty in a particular area, serving as a benchmark against which progress in this area can be measured. An innocent looking problem often gives no hint as to its true nature. It might be like a “marshmallow,” serving as a tasty tidbit supplying a few moments of fleeting enjoyment. Or it might be like an “acorn,” requiring deep and subtle new insights from which a mighty oak can develop.


Chromatic Number Small Integer Arithmetic Progression Infinite Sequence Covering System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    B. Bollobás, Extremal Grophy Theory, Academic Press, London, 1978.Google Scholar
  2. 2.
    S. L. G. Choi, Covering the set of integers by congruence classes of distinct moduli, Mathematics of Computation 25 (1971), 885–895.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    R. Crocker, On the sum of a prime and two powers of two, Pacific J. Math. 36 (1971), 103–107.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    H. T. Croft, K. J. Falconer and R. K. Guy, Unsolved Problems in Geometry, Springer-Verlag, New York, 1991.zbMATHCrossRefGoogle Scholar
  5. 5.
    P. D. T. A. Elliot, Probabilistic Number Theory I, Mean-Value Theorems, Springer-Verlag, New York, 1979.CrossRefGoogle Scholar
  6. 6.
    P. D. T. A. Elliot, Probabilistic Number Theory II, Central Limit Theorems, Springer-Verlag, New York, 1980.Google Scholar
  7. 7.
    P. Erdős, On sets of distances of n points, Amer. Math. Monthly 53 (1946), 248–250.MathSciNetCrossRefGoogle Scholar
  8. 8.
    P. Erdős, On integers of the form 2k + pand some related problems, Summa Brasiliensis Math. II (1950), 113–123.Google Scholar
  9. 9.
    P. Erdős and R. Rado, Intersection theorems for systems of sets, J. London Math. Soc. 35 (1960), 85–90.MathSciNetCrossRefGoogle Scholar
  10. 10.
    P. Erdős and R. Rado, Intersection theorems for systems of sets II, J. London Math. Soc. 44 (1969), 467–479.MathSciNetCrossRefGoogle Scholar
  11. 11.
    P. Erdős, The Art of Counting, J. Spencer, ed., MIT Press, Cambridge, MA, 1973.Google Scholar
  12. 12.
    P. Erdős and R. L. Graham, Old and New Problems and Results in Combinatorial Number Theory, Monograph 28, l’Enseignement Math., 1980.Google Scholar
  13. 13.
    P. Erdős and G. Purdy, Combinatorial geometry, in Handbook of Combinatorics, R. L. Graham, M. Grötschel and L. Lovász, eds., North Holland, Amsterdam, 1994.Google Scholar
  14. 14.
    P. X. Gallagher, Primes and powers of 2, Invent. Math. 29 (1975), 125–142.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    R. L. Graham, B. Rothschild and J. Spencer, Ramsey Theory, 2nd ed., Wiley, New York, 1990.zbMATHGoogle Scholar
  16. 16.
    R. K. Guy, Unsolved Problems in Number Theory, Springer-Verlag, New York, 1981.zbMATHCrossRefGoogle Scholar
  17. 17.
    H. Halberstam and K. F. Roth, Sequences, Springer-Verlag, New York, 1983.zbMATHCrossRefGoogle Scholar
  18. 18.
    R. R. Hall and G. Tenenbaum, Divisors, Cambridge University Press, Cambridge, 1988.zbMATHCrossRefGoogle Scholar
  19. 19.
    J. Nešetřil and V. Rödl, Mathematics of Ramsey Theory, Alg. and Comb. 5, Springer, New York, 1990.Google Scholar
  20. 20.
    N. P. Romanoff, Über einige Sätze der additiven Zahlentheorie, Math. Annalen 109 (1934), 668–678.MathSciNetCrossRefGoogle Scholar
  21. 21.
    M. Simonovits, Extremal Graph Theory, in Selected Topics in Graph Theory, L. Beineke and R. J. Wilson, eds., vol. 2, Academic Press, New York, 1983.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Paul Erdős
    • 1
  1. 1.Mathematical InstituteHungarian Academy of SciencesBudapestHungary

Personalised recommendations