Flag Algebras: An Interim Report

  • Alexander A. Razborov


For the most part, this article is a survey of concrete results in extremal combinatorics obtained with the method of flag algebras. But our survey is also preceded, interleaved and concluded with a few general digressions about the method itself. Also, instead of giving a plain and unannotated list of results, we try to divide our account into several connected stories that often include historical background, motivations and results obtained with the help of methods other than flag algebras.


Edge Density Algebra Homomorphism Oriented Graph Proof Method Graph Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I am grateful to Rahil Baber, Victor Falgas-Ravry, Ron Graham, Sergey Norin and Christian Reiher for useful remarks.


  1. 1.
    R. Baber. Some results in extremal combinatorics. PhD thesis, University College London, 2011.Google Scholar
  2. 2.
    J. Balogh. The Turan density of triple systems is not principal. Journal of Combinatorial Theory, ser. A, 100(1):176–180, 2002.Google Scholar
  3. 3.
    I. Barany. A generalization of Carathéodory’s theorem. Discrete Mathematics, 40, 1982.Google Scholar
  4. 4.
    M. Behzad, G. Chartrand, and C. E. Wall. On minimal regular digraphs with given girth. Fundamenta Mathematicae, 69:227–231, 1970.MathSciNetzbMATHGoogle Scholar
  5. 5.
    E. Boros and Z. Füredi. The number of triangles covering the center of an n-set. Geom. Dedicata, 17:69–77, 1984.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    J. Balogh, P. Hu, B. Lidický, and H. Liu. Upper bounds on the size of 4- and 6-cycle-free subgraphs of the hypercube. Technical Report 1201.0209 [math.CO], arXiv, 2012.Google Scholar
  7. 7.
    B. Bollobás. Relations between sets of complete subgraphs. In Proc. Fifth British Comb. Conference, pages 79–84, 1975.Google Scholar
  8. 8.
    B. Bollobás. On complete subgraphs of different orders. Mathematical Proceedings of the Cambridge Philosophical Society, 79(1):19–24, 1976.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    J. A. Bondy. Counting subgraphs: A new approach to the Caccetta-Häggkvist conjecture. Discrete Math., 165/166:71–80, 1997.Google Scholar
  10. 10.
    B Borchers. CSDP, a C library for semidefinite programming. Optimization Methods and Software, 11(1):613–623, 1999.MathSciNetCrossRefGoogle Scholar
  11. 11.
    W. G. Brown. On an open problem of Paul Turán concerning 3-graphs. In Studies in pure mathematics, pages 91–93. Birkhäuser, 1983.Google Scholar
  12. 12.
    R. Baber and J. Talbot. Hypergraphs do jump. Combinatorics, Probability and Computing, 20(2):161–171, 2011.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    R. Baber and J. Talbot. New Turán densities for 3-graphs. Electronic Journal of Combinatorics, 19(2):P22, 2012.Google Scholar
  14. 14.
    D. de Caen. The current status of Turán problem on hypergraphs. In Extremal Problems for Finite Sets, Visegrád (Hungary), volume 3, pages 187–197. Bolyai Society Mathematical Studies, 1991.Google Scholar
  15. 15.
    F. Chung and R. Graham. Erdős on Graphs: His Legacy of Unsolved Problems. A. K. Peters, 1998.Google Scholar
  16. 16.
    F. R. K. Chung, R. L. Graham, and R. M. Wilson. Quasi-random graphs. Combinatorica, 9:345–362, 1989.MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    L. Caccetta and R. Häggkvist. On minimal digraphs with given girth. Congressus Numerantium, 21:181–187, 1978.Google Scholar
  18. 18.
    F. Chung and L. Lu. An upper bound for the Turán number t 3(n, 4). Journal of Combinatorial Theory (A), 87:381–389, 1999.Google Scholar
  19. 19.
    M. Chudnovsky, P. Seymour, and B. Sullivan. Cycles in dense graphs. Combinatorica, 28(1):1–18, 2008.MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    S. Das, H. Huang, J. Ma, H. Naves, and B. Sudakov. A problem of Erdős on the minimum number of k-cliques. Technical Report 1203.2723 [math.CO], arXiv, 2012.Google Scholar
  21. 21.
    E. de Klerk, D. V. Pasechnik, and A. Schrijver. Reduction of symmetric semidefinite programs using the regular $*$-representation. Mathematical programming, 09:613–624, 2007.CrossRefGoogle Scholar
  22. 22.
    P. Erdős, R. Faudree, A. Gyárfás, and R. H. Schelp. Domination in colored complete graphs. Journal of Graph Theory, 13:713–718, 1989.MathSciNetCrossRefGoogle Scholar
  23. 23.
    P. Erdős. On the number of complete subgraphs contained in certain graphs. Publ. Math. Inst. Hungar. Acad. Sci, 7:459–464, 1962.Google Scholar
  24. 24.
    P. Erdős. On some extremal problems on r-graphs. Discrete Mathematics, 1:1–6, 1971.MathSciNetCrossRefGoogle Scholar
  25. 25.
    P. Erdős. On some problems in graph theory, combinatorial analysis and combinatorial number theory. In Graph theory and combinatorics (Cambridge 1983), pages 1–17, 1984.Google Scholar
  26. 26.
    P. Erdős and A. H. Stone. On the structure of linear graphs. Bulletin of the American Mathematical Society, 52:1087–1091, 1946.MathSciNetCrossRefGoogle Scholar
  27. 27.
    P. Erdős and M. Simonovits. A limit theorem in graph theory. Stud. Sci. Math. Hungar., 1:51–57, 1966.Google Scholar
  28. 28.
    D. G. Fon-der Flaass. Method for construction of (3,4)-graphs. Mathematical Notes, 44(4):781–783, 1988. Translated from Matematicheskie Zametki, Vol. 44, No. 4, pp. 546–550, 1988.Google Scholar
  29. 29.
    P. Frankl and Z. Füredi. An exact result for 3-graphs. Discrete Mathematics, 50:323–328, 1984.MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    D. Fisher. Lower bounds on the number of triangles in a graph. Journal of Graph Theory, 13(4):505–512, 1989.MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Z. Füredi, O. Pikhurko, and M. Simonovits. The Turán density of the hypergraph {abc, ade, bde. cde}. Electronic Journal of Combinatorics, R18, 2003.Google Scholar
  32. 32.
    P. Frankl and V. Rödl. Hypergraphs do not jump. Combinatorica, 4:149–159, 1984.MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    V. Falgas-Ravry and E. R. Vaughan. Turán H-densities for 3-graphs. The Electronic Journal of Combinatorics, 19(3):P40, 2012.Google Scholar
  34. 34.
    V. Falgas-Ravry and E. R. Vaughan. Applications of the semi-definite method to the Turán density problem for 3-graphs. Combinatorics, Probability and Computing, 22:21–54, 2013.Google Scholar
  35. 35.
    A. W. Goodman. On sets of acquaintances and strangers at any party. American Mathematical Monthly, 66(9):778–783, 1959.MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    M. Gromov. Singularities, expanders and topology of maps. Part 2: From combinatorics to topology via algebraic isoperimetry. Geometric and Functional Analysis, 20:416–526, 2010.Google Scholar
  37. 37.
    A. Grzesik. On the maximum number of five-cycles in a triangle-free graph. Journal of Combinatorial Theory, ser. B, 102:1061–1066, 2012.Google Scholar
  38. 38.
    E. Gyori. On the number of C 5’s in a triangle-free graph. Combinatorica, 9(1):101–102, 1989.MathSciNetCrossRefGoogle Scholar
  39. 39.
    P. Hamburger, P. Haxell, and A. Kostochka. On directed triangles in digraphs. Electronic Journal of Combinatorics, 14(1):Note 19, 2007.Google Scholar
  40. 40.
    Hatami H, J. Hladky, D. Kral, S. Norin, and A. Razborov. On the number of pentagons in triangle-free graphs. Technical Report 1102.1634v1 [math.CO], arXiv, 2011.Google Scholar
  41. 41.
    Hatami H, J. Hladky, D. Kral, S. Norin, and A. Razborov. Non-three-colorable common graphs exist. Combinatorics, Probability and Computing, 21(5):734–742, 2012.Google Scholar
  42. 42.
    J. Hirst. The inducibility of graphs on four vertices. Technical Report 1109.1592 [math.CO], arXiv, 2011.Google Scholar
  43. 43.
    J. Hladký, D. Král’, and S. Norin. Counting flags in triangle-free digraphs. Technical Report 0908.2791 [math.CO], arXiv, 2009.Google Scholar
  44. 44.
    H. Hatami and S. Norin. Undecidability of linear inequalities in graph homomorphism densities. Journal of the American Mathematical Society, 24:547–565, 2011.MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    P. Keevash. Hypergraph Turán problems. In R. Chapman, editor, Surveys in Combinatorics, pages 83–140. Cambridge University Press, 2011.Google Scholar
  46. 46.
    D. Král’, C. Liu, J. Sereni, P. Whalen, and Z. Yilma. A new bound for the 2/3 conjecture. Technical Report 1204.2519 [math.CO], arXiv, 2013.Google Scholar
  47. 47.
    D. Král’, L. Mach, and J. Sereni. A new lower bound based on Gromov’s method of selecting heavily covered points. Technical Report 1108.0297 [math.CO], arXiv, 2012.Google Scholar
  48. 48.
    N. Khadžiivanov and V. Nikiforov. The Nordhaus-Stewart-Moon-Moser inequality. Serdica, 4:344–350, 1978. In Russian.MathSciNetGoogle Scholar
  49. 49.
    A. V. Kostochka. A class of constructions for Turán’s (3, 4)-problem. Combinatorica, 2(2):187–192, 1982.MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    L. Lovász. Large Networks and Graph Limits. American Mathematical Society, 2012.Google Scholar
  51. 51.
    L. Lovász and M. Simonovits. On the number of complete subgraphs of a graph, II. In Studies in pure mathematics, pages 459–495. Birkhaüser, 1983.Google Scholar
  52. 52.
    J. W. Moon and L. Moser. On a problem of Turán. Magyar. Tud. Akad. Mat. Kutató Int. Közl, 7:283–286, 1962.MathSciNetzbMATHGoogle Scholar
  53. 53.
    D. Mubayi and O. Pikhurko. Constructions of nonprincipal families in extremal hypergraph theory. Discrete Mathematics, 308(19):4430–4434, 2008.MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    D. Mubayi and V. Rödl. On the Turán number of triple systems. Journal of Combinatorial Theory, Ser. A, 100:136–152, 2002.Google Scholar
  55. 55.
    T. S. Motzkin and E. G. Straus. Maxima for graphs and a new proof of a theorem of Turán. Canadian Journal of Mathematics, 17:533–540, 1965.MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    V. Nikiforov. On the minimum number of k-cliques in graphs with restricted independence number. Combinatorics, Probability and Computing, 10:361–366, 2001.Google Scholar
  57. 57.
    V. Nikiforov. The number of cliques in graphs of given order and size. Transactions of the American Mathematical Society, 363(3):1599–1618, 2011.MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    E. A. Nordhaus and B. M. Stewart. Triangles in an ordinary graph. Canadian J. Math., 15:33–41, 1963.MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    O. Pikhurko. The minimum size of 3-graphs without a 4-set spanning no or exactly three edges. European Journal of Combinatorics, 23:1142–1155, 2011.MathSciNetCrossRefGoogle Scholar
  60. 60.
    O. Pikhurko. Minimum number of k-cliques in graphs with bounded independence number. Technical Report 1204.4423 [math.CO], arXiv, 2012.Google Scholar
  61. 61.
    O. Pikhurko. On possible Turán densities. Technical Report 1204.4423 [math.CO], arXiv, 2012.Google Scholar
  62. 62.
    O. Pikhurko and A. Razborov. Asymptotic structure of graphs with the minimum number of triangles. Technical Report 1204.2846v1 [math.CO], arXiv, 2012.Google Scholar
  63. 63.
    A. Razborov. Flag algebras. Journal of Symbolic Logic, 72(4):1239–1282, 2007.MathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    A. Razborov. On the minimal density of triangles in graphs. Combinatorics, Probability and Computing, 17(4):603–618, 2008.MathSciNetzbMATHGoogle Scholar
  65. 65.
    A. Razborov. On 3-hypergraphs with forbidden 4-vertex configurations. SIAM Journal on Discrete Mathematics, 24(3):946–963, 2010.MathSciNetzbMATHCrossRefGoogle Scholar
  66. 66.
    A. Razborov. On the Caccetta-Haggkvist conjecture with forbidden subgraphs. Technical Report 1107.2247v1 [math.CO], arXiv, 2011.Google Scholar
  67. 67.
    A. Razborov. On the Fon-der-Flaass interpretation of extremal examples for Turan’s (3,4)-problem. Proceedings of the Steklov Institute of Mathematics, 274:247–266, 2011.MathSciNetCrossRefGoogle Scholar
  68. 68.
    A. Razborov. On Turan’s (3,4)-problem with forbidden configurations. Technical Report 1210.4605v1 [math.CO], arXiv, 2012.Google Scholar
  69. 69.
    C. Reiher. The clique density theorem. Technical Report 1212.2454 [math.CO], arXiv, 2012.Google Scholar
  70. 70.
    J. Shen. Directed triangles in graphs. Journal of Combinatorial Theory Ser. B, 74(2):405–407, 1998.zbMATHCrossRefGoogle Scholar
  71. 71.
    A. F. Sidorenko. What we know and what we do not know about Turán numbers. Graphs and Combinatorics, 11:179–199, 1995.MathSciNetzbMATHCrossRefGoogle Scholar
  72. 72.
    K. Sperfeld. The inducibility of small oriented graphs. Technical Report 1111.4813 [math.CO], arXiv, 2011.Google Scholar
  73. 73.
    A. Thomason. A disproof of a conjecture of Erdős in Ramsey theory. Journal of the London Mathematical Society, 39:246–255, 1989.MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    P. Turán. Egy gráfelméleti szélsöértékfeladatról. Mat. és Fiz. Lapok, 48:436–453, 1941.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of ChicagoChicagoUSA

Personalised recommendations