Transgenic Multivitamin Biofortified Corn: Science, Regulation, and Politics

  • Gemma Farré
  • Shaista Naqvi
  • Uxue Zorrilla-López
  • Georgina Sanahuja
  • Judit Berman
  • Gerhard Sandmann
  • Gaspar Ros
  • Rubén López-Nicolás
  • Richard M. Twyman
  • Paul Christou
  • Teresa Capell
  • Changfu Zhu
Part of the Nutrition and Health book series (NH)


Micronutrient deficiency is a major global challenge because at any one time up to 50 % of the world’s population may suffer from diseases caused by a chronic insufficient supply of vitamins and minerals, and this largely reflects the lack of access to a diverse diet [1]. In developed countries, micronutrient deficiency is addressed by encouraging the consumption of fresh fruits and vegetables, along with supplementation and fortification programs to enhance the nutritional value of staple foods [2]. In contrast, the populations of developing countries typically subsist on a monotonous diet of milled cereal grains such as rice or maize, which are poor sources of vitamins and minerals. Strategies that have been proposed to overcome micronutrient deficiencies in developing countries include supplementation, fortification, and the implementation of conventional breeding and genetic engineering programs to generate nutrient-rich varieties of staple crops. Unfortunately, the first two strategies have been largely unsuccessful because of the insufficient funding, poor governance, and dysfunctional distribution network in developing country settings [3]. Biofortification programs based on conventional breeding have enjoyed only marginal success because of the limited available genetic diversity and the time required to develop crops with enhanced nutritional properties as well as desirable agronomic characteristics. It is also impossible to conceive of a conventional breeding strategy that would ever produce “nutritionally complete” cereals [2]. More promising results have been obtained by engineering the metabolic pathways leading to provitamin A, vitamin B9, and vitamin C (β-carotene, folate, and ascorbate) in the same transgenic corn line [4]. Genetic engineering therefore has immense potential to improve the nutritional properties of staple crops and contribute to better health, although a number of technical, economical, regulatory, and sociopolitical constraints remain to be addressed.


Plant biotechnology Genetic engineering Transgenic crop Vitamin Reference daily intake Subsistence agriculture Developing country Vitamin deficiency Multivitamin corn Hypervitaminosis 



Aminodeoxychorismate synthase


Bacterial phytoene synthase


Bacterial phytoene desaturase/isomerase


Bacterial lycopene cyclase


Dehydroascorbate reductase


7,8-Dihydropteroate synthase


European Union


E. coli GTP cyclohydrolase


Folypolyglutamate synthetase


l-Galactono-1,4-lactone dehydrogenase


GTP cyclohydrolase 1


GDP-l-galactose phosphorylase


Geranylgeranyl diphosphate


Gent iana lutea β-carotene hydroxylase


Gentiana lutea lycopene β-cyclase


l-Gulono1,4-lactone oxidase




Homogentisic acid




ρ-Hydroxyphenylpyruvic acid


ρ-Hydroxyphenylpyruvic acid dioxygenase


6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase


Homogentisate phytyltransferase






MPBQ methyltransferase






Pantoea ananatis phytoene desaturase


Paracoccus β-carotene ketolase


Phytoene synthase


Retinol activity equivalent


Reference daily intake


RNA interference


Tocopherol cyclase


Prephenate dehydrogenase


Zea mays phytoene synthase 1


γ-Tocopherol methyltransferase



Research at the Universitat de Lleida is supported by MICINN, Spain (BIO2011-23324; BIO02011-22525; BIO2012-35359; PIM2010PKB-00746); European Union Framework 7 Program-SmartCell Integrated Project 222716; European Union Framework 7 European Research Council IDEAS Advanced Grant (to PC) Program-BIOFORCE; RecerCaixa; COST Action FA0804: Molecular farming: plants as a production platform for high value proteins; Centre CONSOLIDER on Agrigenomics funded by MICINN, Spain.


  1. 1.
    Zhu C, Naqvi S, Gomez-Galera S, Pelacho AM, Capell T, Christou P. Transgenic strategies for the nutritional enhancement of plants. Trends Plant Sci. 2007;12:548–55.PubMedCrossRefGoogle Scholar
  2. 2.
    Gomez-Galera S, Rojas E, Sudhakar D, Zhu C, Pelacho AM, Capell T, et al. Critical evaluation of strategies for mineral fortification of staple food crops. Transgenic Res. 2010;19:165–80.PubMedCrossRefGoogle Scholar
  3. 3.
    Nantel G, Tontisirin K. Policy and sustainability issues. J Nutr. 2002;132:S839–44.Google Scholar
  4. 4.
    Naqvi S, Zhu C, Farré G, Ramessara K, Bassie L, Breitenbach J, et al. Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc Natl Acad Sci U S A. 2009;106:7762–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Farré G, Sanahuja G, Naqvi S, Bai C, Capell T, Zhu C, et al. Travel advice on the road to carotenoids in plants. Plant Sci. 2010;179:28–48.CrossRefGoogle Scholar
  6. 6.
    Fraser PD, Enfissi EMA, Halket JM, Truesdale MR, Yu D, Gerrish C, et al. Manipulation of phytoene levels in tomato fruit: effects on isoprenoids, plastids and intermediary metabolism. Plant Cell. 2007;19:3194–211.PubMedCrossRefGoogle Scholar
  7. 7.
    Shewmaker CK, Sheehyl JA, Daley M, Colburn S, Ke YD. Seed-specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects. Plant J. 1999;20:401–12.PubMedCrossRefGoogle Scholar
  8. 8.
    Zhu C, Naqvi S, Breitenbach J, Sandmann G, Christou P, Capell T. Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in corn. Proc Natl Acad Sci U S A. 2008;105:18232–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Ravanello MP, Ke D, Alvarez J, Huang B, Shewmaker CK. Coordinate expression of multiple bacterial carotenoid genes in canola leading to altered carotenoid production. Metab Eng. 2003;5:255–63.PubMedCrossRefGoogle Scholar
  10. 10.
    Burkhard PK, Beyer P, Wünn J, Klöti A, Armstrong GA, Schledz M, et al. Transgenic rice (Oryza sativa) endosperm expressing daffodil (Narcissus pseudonarcissus) phytoene synthase accumulates phytoene, a key intermediate of provitamin A biosynthesis. Plant J. 1997;11:1071–8.CrossRefGoogle Scholar
  11. 11.
    Yu B, Lydiate DJ, Young LW, Schäfer UA, Hannoufa A. Enhancing the carotenoid content of Brassica napus seeds by downregulating lycopene epsilon cyclase. Transgenic Res. 2008;17:573–85.PubMedCrossRefGoogle Scholar
  12. 12.
    Li L, Paolillo DJ, Parthasarathy MV, Dimuzio EM, Garvin DF. A novel gene mutation that confers abnormal patterns of beta-carotene accumulation in cauliflower (Brassica oleracea var. botrytis). Plant J. 2001;26:59–67.PubMedCrossRefGoogle Scholar
  13. 13.
    Lu S, Van Eck J, Zhou X, Lopez AB, O’Halloran DM, Cosman KM, et al. The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of beta-carotene accumulation. Plant Cell. 2006;18:3594–605.PubMedCrossRefGoogle Scholar
  14. 14.
    Lopez AB, Van Eck J, Conlin BJ, Paolillo DJ, O’Neill J, Li L. Effect of the cauliflower Or transgene on carotenoid accumulation and chromoplast formation in transgenic potato tubers. J Exp Bot. 2008;59:213–23.PubMedCrossRefGoogle Scholar
  15. 15.
    Jain AK, Nessler CL. Metabolic engineering of an alternative pathway for ascorbic acid biosynthesis in plants. Mol Breed. 2000;6:73–8.CrossRefGoogle Scholar
  16. 16.
    Ishikawa T, Dowdle J, Smirnoff N. Progress in manipulating ascorbic acid biosynthesis and accumulation in plants. Physiol Plant. 2006;126:343–55.CrossRefGoogle Scholar
  17. 17.
    Hemavathi CP, Upadhyaya AN, Akula N, Young KE, Chun SC, Kim DH, et al. Enhanced ascorbic acid accumulation in transgenic potato confers tolerance to various abiotic stresses. Biotechnol Lett. 2010;32:321–30.PubMedCrossRefGoogle Scholar
  18. 18.
    Qin A, Shi Q, Yu X. Ascorbic acid contents in transgenic potato plants overexpressing two dehydroascorbate reductase genes. Mol Biol Rep. 2010;38:1557–66.PubMedCrossRefGoogle Scholar
  19. 19.
    Quinlivan EP, McPartlin J, McNulty H, Ward M, Strain JJ, Weir DG, et al. Importance of both folic acid and vitamin B12 in reduction of risk of vascular disease. Lancet. 2002;359:227–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Geisel J. Folic acid and neural tube defects in pregnancy—a review. J Perinat Neonatal Nurs. 2003;17:268–79.PubMedGoogle Scholar
  21. 21.
    Farré G, Twyman RM, Zhu C, Capell T, Christou P. Nutritionally enhanced crops and food security: scientific achievements versus political expediency. Curr Opin Biotechnol. 2011;22:245–51.PubMedCrossRefGoogle Scholar
  22. 22.
    Díaz de la Garza RI, Quinlivan EP, Klaus SM, Basset GJ, Gregory JF, Hanson AD. Folate biofortification in tomatoes by engineering the pteridine branch of folate synthesis. Proc Natl Acad Sci U S A. 2004;101:13720–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Storozhenko S, De Brouwer V, Volckaert M, Navarrete O, Blancquaert D, Zhang GF, et al. Folate fortification of rice by metabolic engineering. Nat Biotechnol. 2007;25:1277–9.PubMedCrossRefGoogle Scholar
  24. 24.
    McIntosh SR, Henry RJ. Genes of folate biosynthesis in wheat. J Cereal Sci. 2008;48:632–8.CrossRefGoogle Scholar
  25. 25.
    Karunanandaa B, Qi Q, Haoa M, Baszis S, Jensen P, Wong Y, et al. Metabolically engineered oilseed crops with enhanced seed tocopherol. Metab Eng. 2005;7:384–400.PubMedCrossRefGoogle Scholar
  26. 26.
    Kumar R, Raclaru M, Schusseler T, Gruber J, Sadre R, Lühs W, et al. Characterisation of plant tocopherol cyclases and their overexpression in transgenic Brassica napus seeds. FEBS Lett. 2005;579:1357–64.PubMedCrossRefGoogle Scholar
  27. 27.
    van Eenennaam AL, Lincoln K, Durrett TP, Valentin HE, Shewmaker CK, Thorne GM, et al. Engineering vitamin E content: from Arabidopsis mutant to soy oil. Plant Cell. 2003;15:3007–19.PubMedCrossRefGoogle Scholar
  28. 28.
    Fraser P, Bramley PM. The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res. 2004;43:228–65.PubMedCrossRefGoogle Scholar
  29. 29.
    Chatterjee IB, Majumder AK, Nandi BK, Subramanian N. Synthesis and some major functions of vitamin C in animals. Ann N Y Acad Sci. 1975;258:24–47.PubMedCrossRefGoogle Scholar
  30. 30.
    Zhu C, Sanahuja G, Yuan D Farre G, Arjo G, Berman J, Zorrilla-Lopez U, et al. Biofortification of plants with altered antioxidant content and composition: genetic engineering strategies. Plant Biotechnol J 2013;11:129–41.Google Scholar
  31. 31.
    Ames BN. Cancer prevention and diet: help from single nucleotide polymorphisms. Proc Natl Acad Sci U S A. 1998;96:12216–8.CrossRefGoogle Scholar
  32. 32.
    Green R, Miller JW. Folate deficiency beyond megaloblastic anemia: hyperhomocysteinemia and other manifestations of dysfunctional folate status. Semin Hematol. 1999;36:47–64.PubMedGoogle Scholar
  33. 33.
    Naqvi S, Farré G, Sanahuja G, Capell T, Zhu C, Christou P. When more is better: multigene engineering in plants. Trends in Plant Sci. 2010;15:48–56.Google Scholar
  34. 34.
    Stanger O. The potential role of homocysteine in percutaneous coronary interventions (PCI): review of current evidence and plausibility of action. Cell Mol Biol. 2004;50:953–88.PubMedGoogle Scholar
  35. 35.
    Choi SW, Friso S. Interactions between folate and aging for carcinogenesis. Clin Chem Lab Med. 2005;43:1151–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Institute of Medicine (IOM), Food and Nutrition Board. Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids. A report of the panel on dietary antioxidants and related compounds, subcommittees on upper reference levels of nutrients and interpretation and uses of dietary reference intakes, and the standing committee on the scientific evaluation of dietary reference intakes. Washington, DC: National Academy Press; 2001.Google Scholar
  37. 37.
    Institute of Medicine (IOM). Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline. Washington, DC: National Academy Press; 1998.Google Scholar
  38. 38.
    Naqvi S, Zhu C, Farré G, Sandmann G, Capell T, Christou P. Synergistic metabolism in hybrid corn indicates bottlenecks in the carotenoid pathway and leads to the accumulation of extraordinary levels of the nutritionally important carotenoid zeaxanthin. Plant Biotechnol. 2011;9:384–93.CrossRefGoogle Scholar
  39. 39.
    Bai C, Twyman RM, Farré G, Sanahuja G, Christou P, Capell T, et al. A golden era—pro-vitamin A enhancement in diverse crops. In Vitro Cell Dev Biol Plant. 2011;47:205–21.Google Scholar
  40. 40.
    Paolillo DJ, Garvin DF, Parthasarathy MV. The chromoplasts of Or mutants of cauliflower (Brassica oleracea L. var. botrytis). Protoplasma. 2004;224:245–53.PubMedCrossRefGoogle Scholar
  41. 41.
    Yuan D, Bassie L, Sabalza M, Miralpeix B, Dashevskaya S, Farré G, et al. The potential impact of plant biotechnology on the millennium development goals. Plant Cell Rep. 2011;30:249–65.PubMedCrossRefGoogle Scholar
  42. 42.
    Sabalza M, Miralpeix B, Twyman RM, Capell T, Christou P. EU legitimizes GM crop exclusion zones. Nat Biotechnol. 2011;29:315–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Farré G, Ramessar K, Twyman RM, Capell T, Christou P. The humanitarian impact of plant biotechnology: recent breakthroughs vs bottlenecks for adoption. Curr Opin Plant Biol. 2010;13:219–25.PubMedCrossRefGoogle Scholar
  44. 44.
    Ramessar K, Capell T, Twyman RM, Christou P. Going to ridiculous lengths European coexistence regulations for GM crops. Nat Biotechnol. 2010;28:133–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Twyman RM, Ramessar K, Quemada H, Capell T, Christou P. Plant biotechnology: the importance of being accurate. Trends Biotechnol. 2009;27:609–12.PubMedCrossRefGoogle Scholar
  46. 46.
    Sizer F, Sienkiewicz F, Whitney E. Nutrition: concepts and controversies. 11th ed. Belmont, CA: Thomson Wadsworth; 2008. p. 221–35.Google Scholar
  47. 47.
    Maqbool A, Stallings VA. Update on fat-soluble vitamins in cystic fibrosis. Curr Opin Pulm Med. 2008;14:74–581.CrossRefGoogle Scholar
  48. 48.
    Hathcock JN, Azzi A, Blumberg J, Bray T, Dickinson A, Frei B, et al. Vitamins E and C are safe across a broad range of intakes. Am J Clin Nutr. 2005;81:736–45.PubMedGoogle Scholar
  49. 49.
    Baggott JE, Morgan SL, Ha T, Vaughn WH, Hine RJ. Inhibition of folate-dependent enzymes by non-steroidal anti-inflammatory drugs. Biochem J. 1992;282:197–202.PubMedGoogle Scholar
  50. 50.
    Baggott JE, Oster RA, Tamura T. Meta-analysis of cancer risk in folic acid supplementation trials. Colorectal Dis. 2011;13:132–7.CrossRefGoogle Scholar
  51. 51.
    Harjes CE, Rocheford TR, Bai L, Brutnell TP, Kandianis CB, Sowinski SG, et al. Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science. 2008;319:330–3.PubMedCrossRefGoogle Scholar
  52. 52.
    Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, et al. Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat Biotechnol. 2005;23:482–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Gemma Farré
    • 1
  • Shaista Naqvi
    • 1
    • 2
  • Uxue Zorrilla-López
    • 1
  • Georgina Sanahuja
    • 1
  • Judit Berman
    • 1
  • Gerhard Sandmann
    • 3
  • Gaspar Ros
    • 4
  • Rubén López-Nicolás
    • 4
  • Richard M. Twyman
    • 5
  • Paul Christou
    • 1
    • 6
  • Teresa Capell
    • 1
  • Changfu Zhu
    • 1
  1. 1.Department of Plant Production and Forestry Science, ETSEAUniversity of Lleida-Agrotecnio CenterLleidaSpain
  2. 2.MRC Protein Phosphorylation UnitCollege of Life Sciences, Sir James Black Complex, University of DundeeDundeeUK
  3. 3.Bisynthesis Group, Molecular BiosciencesJohann Wolfgang Goethe UniversitätFrankfurtGermany
  4. 4.Department of Food Science and Nutrition, Faculty of Veterinary SciencesRegional Campus of International Excellence “Campus Mare Nostrum”, University of MurciaMurciaSpain
  5. 5.TRM Ltd.YorkUK
  6. 6.Institució Catalana de Recerca I Estudis AvançatsBarcelonaSpain

Personalised recommendations