Cancer Stem Cells in Resistance to Cytotoxic Drugs: Implications in Chemotherapy

  • Man-Tzu Wang
  • Hongmei Jiang
  • Debasish Boral
  • Daotai Nie
Part of the Resistance to Targeted Anti-Cancer Therapeutics book series (RTACT, volume 1)


The efficacy of cytotoxic chemotherapy is limited by drug resistance presented by some cancer cells. Cancer stem cells (CSCs) are a sub-population of tumor cells that can initiate tumor formation. If chemotherapy kills bulk of cells within a tumor but not CSCs, the surviving CSCs can initiate the formation of recurrent tumors. This article discusses the inherent resistance of CSCs toward cytotoxic chemotherapy and some possible mechanisms involved. Approaches to target CSCs to improve the efficacy of chemotherapy will also be discussed.


Cancer stem cells Drug resistance Multidrug resistance ATP binding cassette transporters Quiescence Cell survival Nanog 



ATP binding cassette


Aldehyde dehydrogenase


Breast cancer resistance protein


Cancer stem cells


Epidermal growth factor receptor


Embryonic stem cells


Label retaining cells


Multidrug resistance


Side population



We would like acknowledge the support from United States Department of Defense Prostate Cancer Research Program Pre-doctoral Fellowship Award W81XWH-10-1-0636 (M.T.W, H.J.), Breast Cancer Research Program Idea Award W81XWH-08-1-0540 (D.N.), and National Cancer Institute R01CA13445 (D.N.) and R15CA133776 (D.N.).

Conflicts of Interest

No potential conflicts of interest were disclosed.


  1. 1.
    Bates SE, Regis JI, Robey RW, Zhan Z, Scala S, Meadows BJ. Chemoresistance in the clinic: overview 1994. Bull Cancer. 1994;81(Suppl 2):55s–61s.PubMedGoogle Scholar
  2. 2.
    Gupta AK, McKenna WG, Weber CN, Feldman MD, Goldsmith JD, Mick R, Machtay M, Rosenthal DI, Bakanauskas VJ, Cerniglia GJ, Bernhard EJ, Weber RS, Muschel RJ. Local recurrence in head and neck cancer: relationship to radiation resistance and signal transduction. Clin Cancer Res. 2002;8:885–92.PubMedGoogle Scholar
  3. 3.
    Issa JP, Gharibyan V, Cortes J, Jelinek J, Morris G, Verstovsek S, Talpaz M, Garcia-Manero G, Kantarjian HM. Phase II study of low-dose decitabine in patients with chronic myelogenous leukemia resistant to imatinib mesylate. J Clin Oncol. 2005;23:3948–56.PubMedCrossRefGoogle Scholar
  4. 4.
    Mansouri A, Henle KJ, Nagle WA. Tumor drug-resistance: a challenge to therapists and biologists. Am J Med Sci. 1994;307:438–44.PubMedCrossRefGoogle Scholar
  5. 5.
    Harrison L, Blackwell K. Hypoxia and anemia: factors in decreased sensitivity to radiation therapy and chemotherapy? Oncologist. 2004;9(Suppl 5):31–40.PubMedCrossRefGoogle Scholar
  6. 6.
    Cusack JC Jr, Liu R, Houston M, Abendroth K, Elliott PJ, Adams J, Baldwin AS Jr. Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341: implications for systemic nuclear factor-kappaB inhibition. Cancer Res. 2001;61:3535–40.PubMedGoogle Scholar
  7. 7.
    Camp ER, Li J, Minnich DJ, Brank A, Moldawer LL, MacKay SL, Hochwald SN. Inducible nuclear factor-kappaB activation contributes to chemotherapy resistance in gastric cancer. J Am Coll Surg. 2004;199:249–58.PubMedCrossRefGoogle Scholar
  8. 8.
    Johnson WW. P-glycoprotein-mediated efflux as a major factor in the variance of absorption and distribution of drugs: modulation of chemotherapy resistance. Methods Find Exp Clin Pharmacol. 2002;24:501–14.PubMedCrossRefGoogle Scholar
  9. 9.
    Haber M, Smith J, Bordow SB, Flemming C, Cohn SL, London WB, Marshall GM, Norris MD. Association of high-level MRP1 expression with poor clinical outcome in a large prospective study of primary neuroblastoma. J Clin Oncol. 2006;24:1546–53.PubMedCrossRefGoogle Scholar
  10. 10.
    Hua J, Mutch DG, Herzog TJ. Stable suppression of MDR-1 gene using siRNA expression vector to reverse drug resistance in a human uterine sarcoma cell line. Gynecol Oncol. 2005;98:31–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Fink D, Nebel S, Aebi S, Zheng H, Cenni B, Nehmé A, Christen RD, Howell SB. The role of DNA mismatch repair in platinum drug resistance. Cancer Res. 1996;56:4881–6.PubMedGoogle Scholar
  12. 12.
    Ioffe ML, White E, Nelson DA, Dvorzhinski D, DiPaola RS. Epothilone induced cytotoxicity is dependent on p53 status in prostate cells. Prostate. 2004;61:243–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Murata T, Haisa M, Uetsuka H, Nobuhisa T, Ookawa T, Tabuchi Y, Shirakawa Y, Yamatsuji T, Matsuoka J, Nishiyama M, Tanaka N, Naomoto Y. Molecular mechanism of chemoresistance to cisplatin in ovarian cancer cell lines. Int J Mol Med. 2004;13:865–8.PubMedGoogle Scholar
  14. 14.
    Pommier Y, Sordet O, Antony S, Hayward RL, Kohn KW. Apoptosis defects and chemotherapy resistance: molecular interaction maps and networks. Oncogene. 2004;23:2934–49.PubMedCrossRefGoogle Scholar
  15. 15.
    Righetti SC, Della Torre G, Pilotti S, Ménard S, Ottone F, Colnaghi MI, Pierotti MA, Lavarino C, Cornarotti M, Oriana S, Böhm S, Bresciani GL, Spatti G, Zunino F. A comparative study of p53 gene mutations, protein accumulation, and response to cisplatin-based chemotherapy in advanced ovarian carcinoma. Cancer Res. 1996;56:689–93.PubMedGoogle Scholar
  16. 16.
    Sartorius UA, Krammer PH. Upregulation of Bcl-2 is involved in the mediation of chemotherapy resistance in human small cell lung cancer cell lines. Int J Cancer. 2002;97:584–92.PubMedCrossRefGoogle Scholar
  17. 17.
    Wicha MS, Liu S, Dontu G. Cancer stem cells: an old idea–a paradigm shift. Cancer Res. 2006;66:1883–90; discussion 95–6.Google Scholar
  18. 18.
    Baumann M, Krause M, Hill R. Exploring the role of cancer stem cells in radioresistance. Nat Rev Cancer. 2008;8:545–54.PubMedCrossRefGoogle Scholar
  19. 19.
    Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL, Wahl GM. Cancer stem cells–perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res. 2006;66:9339–44.PubMedCrossRefGoogle Scholar
  20. 20.
    Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367:645–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Elliott A, Adams J, Al-Hajj M. The ABCs of cancer stem cell drug resistance. IDrugs. 2010;13:632–5.PubMedGoogle Scholar
  22. 22.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100:3983–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444:756–60.PubMedCrossRefGoogle Scholar
  24. 24.
    Dalerba P, Clarke MF. Cancer stem cells and tumor metastasis: first steps into uncharted territory. Cell Stem Cell. 2007;1:241–2.PubMedCrossRefGoogle Scholar
  25. 25.
    O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445:106–10.PubMedCrossRefGoogle Scholar
  26. 26.
    Tirino V, Desiderio V, d’Aquino R, De Francesco F, Pirozzi G, Graziano A, Galderisi U, Cavaliere C, De Rosa A, Papaccio G, Giordano A. Detection and characterization of CD133 + cancer stem cells in human solid tumours. PLoS ONE. 2008;3:e3469.PubMedCrossRefGoogle Scholar
  27. 27.
    Lee JT, Herlyn M. Old disease, new culprit: tumor stem cells in cancer. J Cell Physiol. 2007;213:603–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Maitland NJ, Collins AT. Prostate cancer stem cells: a new target for therapy. J Clin Oncol. 2008;26:2862–70.PubMedCrossRefGoogle Scholar
  29. 29.
    Dell’Albani P. Stem cell markers in gliomas. Neurochem Res. 2008;33:2407–15.PubMedCrossRefGoogle Scholar
  30. 30.
    Gammon L, Biddle A, Fazil B, Harper L, Mackenzie IC. Stem cell characteristics of cell sub-populations in cell lines derived from head and neck cancers of Fanconi anemia patients. J Oral Pathol Med. 2011;40:143–52.PubMedCrossRefGoogle Scholar
  31. 31.
    Quintana E, Shackleton M, Foster HR, Fullen DR, Sabel MS, Johnson TM, Morrison SJ. Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized. Cancer Cell. 2010;18:510–23.PubMedCrossRefGoogle Scholar
  32. 32.
    Gavert N, Vivanti A, Hazin J, Brabletz T, Ben-Ze’ev A. L1-mediated colon cancer cell metastasis does not require changes in EMT and cancer stem cell markers. Mol Cancer Res. 2011;9:14–24.Google Scholar
  33. 33.
    Ma S, Chan KW, Lee TK, Tang KH, Wo JY, Zheng BJ, Guan XY. Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell populations. Mol Cancer Res. 2008;6:1146–53.PubMedCrossRefGoogle Scholar
  34. 34.
    Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.PubMedCrossRefGoogle Scholar
  35. 35.
    Allenspach EJ, Maillard I, Aster JC, Pear WS. Notch signaling in cancer. Cancer Biol Ther. 2002;1:466–76.PubMedCrossRefGoogle Scholar
  36. 36.
    Leonessa F, Clarke R. ATP binding cassette transporters and drug resistance in breast cancer. Endocr Relat Cancer. 2003;10:43–73.PubMedCrossRefGoogle Scholar
  37. 37.
    Donnenberg VS, Donnenberg AD. Multiple drug resistance in cancer revisited: the cancer stem cell hypothesis. J Clin Pharmacol. 2005;45:872–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Minemura M, Tanimura H, Tabor E. Overexpression of multidrug resistance genes MDR1 and cMOAT in human hepatocellular carcinoma and hepatoblastoma cell lines. Int J Oncol. 1999;15:559–63.PubMedGoogle Scholar
  39. 39.
    Doyle LA, Yang W, Abruzzo LV, Krogmann T, Gao Y, Rishi AK, Ross DD. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci U S A. 1998;95:15665–70.PubMedCrossRefGoogle Scholar
  40. 40.
    La Porta CA. Drug resistance in melanoma: new perspectives. Curr Med Chem. 2007;14:387–91.PubMedCrossRefGoogle Scholar
  41. 41.
    Seigel GM, Campbell LM, Narayan M, Gonzalez-Fernandez F. Cancer stem cell characteristics in retinoblastoma. Mol Vis. 2005;11:729–37.PubMedGoogle Scholar
  42. 42.
    Wulf GG, Wang RY, Kuehnle I, Weidner D, Marini F, Brenner MK, Andreeff M, Goodell MA. A leukemic stem cell with intrinsic drug efflux capacity in acute myeloid leukemia. Blood. 2001;98:1166–73.PubMedCrossRefGoogle Scholar
  43. 43.
    Chiba S. Notch signaling in stem cell systems. Stem Cells. 2006;24:2437–47.PubMedCrossRefGoogle Scholar
  44. 44.
    Marchitti SA, Brocker C, Stagos D, Vasiliou V. Non-P450 aldehyde oxidizing enzymes: the aldehyde dehydrogenase superfamily. Expert Opin Drug Metab Toxicol. 2008;4:697–720.PubMedCrossRefGoogle Scholar
  45. 45.
    Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S, Schott A, Hayes D, Birnbaum D, Wicha MS, Dontu G. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1:555–67.PubMedCrossRefGoogle Scholar
  46. 46.
    Pearce DJ, Taussig D, Simpson C, Allen K, Rohatiner AZ, Lister TA, Bonnet D. Characterization of cells with a high aldehyde dehydrogenase activity from cord blood and acute myeloid leukemia samples. Stem Cells. 2005;23:752–60.PubMedCrossRefGoogle Scholar
  47. 47.
    Pearce DJ, Taussig D, Zibara K, Smith LL, Ridler CM, Preudhomme C, Young BD, Rohatiner AZ, Lister TA, Bonnet D. AML engraftment in the NOD/SCID assay reflects the outcome of AML: implications for our understanding of the heterogeneity of AML. Blood. 2006;107:1166–73.PubMedCrossRefGoogle Scholar
  48. 48.
    Taussig DC, Pearce DJ, Simpson C, Rohatiner AZ, Lister TA, Kelly G, Luongo JL, Danet-Desnoyers GA, Bonnet D. Hematopoietic stem cells express multiple myeloid markers: implications for the origin and targeted therapy of acute myeloid leukemia. Blood. 2005;106:4086–92.PubMedCrossRefGoogle Scholar
  49. 49.
    Vasiliou V, Pappa A, Estey T. Role of human aldehyde dehydrogenases in endobiotic and xenobiotic metabolism. Drug Metab Rev. 2004;36:279–99.PubMedCrossRefGoogle Scholar
  50. 50.
    Ma S, Lee TK, Zheng BJ, Chan KW, Guan XY. CD133 + HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene. 2008;27:1749–58.PubMedCrossRefGoogle Scholar
  51. 51.
    Wang SJ, Bourguignon LY. Hyaluronan and the interaction between CD44 and epidermal growth factor receptor in oncogenic signaling and chemotherapy resistance in head and neck cancer. Arch Otolaryngol–head Neck Surg. 2006;132:771–8.Google Scholar
  52. 52.
    Wang SJ, Bourguignon LY. Hyaluronan-CD44 promotes phospholipase C-mediated Ca2 + signaling and cisplatin resistance in head and neck cancer. Arch Otolaryngol–head Neck Surg. 2006;132:19–24.Google Scholar
  53. 53.
    Schenk EL, Koh BD, Flatten KS, Peterson KL, Parry D, Hess AD, Smith BD, Karp JE, Karnitz LM, Kaufmann SH. Effects of selective checkpoint kinase 1 inhibition on cytarabine cytotoxicity in acute myelogenous leukemia cells in vitro. Clin Cancer Res. 2012;18:5364–73.PubMedCrossRefGoogle Scholar
  54. 54.
    Welm BE, Tepera SB, Venezia T, Graubert TA, Rosen JM, Goodell MA. Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev Biol. 2002;245:42–56.PubMedCrossRefGoogle Scholar
  55. 55.
    Holyoake T, Jiang X, Eaves C, Eaves A. Isolation of a highly quiescent subpopulation of primitive leukemic cells in chronic myeloid leukemia. Blood. 1999;94:2056–64.PubMedGoogle Scholar
  56. 56.
    Guan Y, Hogge DE. Proliferative status of primitive hematopoietic progenitors from patients with acute myelogenous leukemia (AML). Leukemia. 2000;14:2135–41.PubMedCrossRefGoogle Scholar
  57. 57.
    Orkin SH. Chipping away at the embryonic stem cell network. Cell. 2005;122:828–30.PubMedCrossRefGoogle Scholar
  58. 58.
    Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, Gifford DK, Melton DA, Jaenisch R, Young RA. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 2005;122:947–56.PubMedCrossRefGoogle Scholar
  59. 59.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.PubMedCrossRefGoogle Scholar
  60. 60.
    Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell. 2003;113:631–42.PubMedCrossRefGoogle Scholar
  61. 61.
    Clark AT, Rodriguez RT, Bodnar MS, Abeyta MJ, Cedars MI, Turek PJ, Firpo MT, Reijo Pera RA. Human STELLAR, NANOG, and GDF3 genes are expressed in pluripotent cells and map to chromosome 12p13, a hotspot for teratocarcinoma. Stem Cells. 2004;22:169–79.PubMedCrossRefGoogle Scholar
  62. 62.
    Ye F, Zhou C, Cheng Q, Shen J, Chen H. Stem-cell-abundant proteins Nanog, Nucleostemin and Musashi1 are highly expressed in malignant cervical epithelial cells. BMC Cancer. 2008;8:108–13.PubMedCrossRefGoogle Scholar
  63. 63.
    Hoei-Hansen CE, Almstrup K, Nielsen JE, Brask Sonne S, Graem N, Skakkebaek NE, Leffers H, Rajpert-De Meyts E. Stem cell pluripotency factor NANOG is expressed in human fetal gonocytes, testicular carcinoma in situ and germ cell tumours. Histopathology. 2005;47:48–56.PubMedCrossRefGoogle Scholar
  64. 64.
    Chiou SH, Yu CC, Huang CY, Lin SC, Liu CJ, Tsai TH, Chou SH, Chien CS, Ku HH, Lo JF. Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma. Clin Cancer Res. 2008;14:4085–95.PubMedCrossRefGoogle Scholar
  65. 65.
    Suvà ML, Riggi N, Stehle JC, Baumer K, Tercier S, Joseph JM, Suvà D, Clément V, Provero P, Cironi L, Osterheld MC, Guillou L, Stamenkovic I. Identification of cancer stem cells in Ewing’s sarcoma. Cancer Res. 2009;69:1776–81.PubMedCrossRefGoogle Scholar
  66. 66.
    Ezeh UI, Turek PJ, Reijo RA, Clark AT. Human embryonic stem cell genes OCT4, NANOG, STELLAR, and GDF3 are expressed in both seminoma and breast carcinoma. Cancer. 2005;104:2255–65.PubMedCrossRefGoogle Scholar
  67. 67.
    Jeter CR, Badeaux M, Choy G, Chandra D, Patrawala L, Liu C, Calhoun-Davis T, Zaehres H, Daley GQ, Tang DG. Functional evidence that the self-renewal gene NANOG regulates human tumor development. Stem Cells. 2009;27:993–1005.PubMedCrossRefGoogle Scholar
  68. 68.
    Jeter CR, Liu B, Liu X, Chen X, Liu C, Calhoun-Davis T, Repass J, Zaehres H, Shen JJ, Tang DG. NANOG promotes cancer stem cell characteristics and prostate cancer resistance to androgen deprivation. Oncogene. 30:3833–45.Google Scholar
  69. 69.
    Kumar SM, Liu S, Lu H, Zhang H, Zhang PJ, Gimotty PA, Guerra M, Guo W, Xu X. Acquired cancer stem cell phenotypes through Oct4-mediated dedifferentiation. Oncogene. 2012;31:4898–911.PubMedCrossRefGoogle Scholar
  70. 70.
    Bourguignon LY, Wong G, Earle C, Chen L. Hyaluronan-CD44v3 interaction with Oct4-Sox2-Nanog promotes miR-302 expression leading to self-renewal, clonal formation, and cisplatin resistance in cancer stem cells from head and neck squamous cell carcinoma. J Biol Chem. 2012;287:32800–24.PubMedCrossRefGoogle Scholar
  71. 71.
    Todaro M, Alea MP, Di Stefano AB, Cammareri P, Vermeulen L, Iovino F, Tripodo C, Russo A, Gulotta G, Medema JP, Stassi G. Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell. 2007;1:389–402.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Man-Tzu Wang
    • 1
  • Hongmei Jiang
    • 1
  • Debasish Boral
    • 1
  • Daotai Nie
    • 1
  1. 1.Department of Medical Microbiology, Immunology, and Cell BiologySouthern Illinois University School of Medicine and Simmons Cancer InstituteSpringfieldUSA

Personalised recommendations