Environmental and Economical Opportunities for the Valorisation of the Genus Atriplex: New Insights

  • Maali Benzarti
  • Kilani Ben Rejeb
  • Ahmed Debez
  • Chedly Abdelly
Chapter

Abstract

Atriplex species are members of the Chenopodiaceae. There are more than 400 species growing naturally in arid and semi arid regions of the world, most of which are highly tolerant to drought and salt. Atriplex species contain high levels of protein and economically valuable compounds. These characteristics could make Atriplex a suitable food for livestock in saline or arid/ semi-arid area. Furthermore, Atriplex can take up salt ions from saline soil and sequester it into the salt glands at the leaf surface. This trait is of high significance since it allows them to be used for revegetation of saline or arid/semi-arid lands. Atriplex species have also been used for cloning some genes related to drought and salt tolerance. This review is a new contribution that updates knowledge on the ecological and socio-economical potential of some plant genus Atriplex.

References

  1. Abu-Zanat MMW (2005) Voluntary intake and digestibility of saltbush by sheep. Asian Aust J Anim Sci 18:214–220Google Scholar
  2. Al-Jaber NAA, Mujahid TG, Al-Hazmi HMG (1992) Secondary metabolites of chenopodiaceace species. J Chem Scoc Pak 14:76–83Google Scholar
  3. Awaad AS, Maitland DJ, Donia AERM, Alqasoumi SI, Soliman GA (2012) Novel flavonoids with antioxidant activity from a Chenopodiaceous plant. Pharmaceutical Biol 50:99–104CrossRefGoogle Scholar
  4. Bakhtiuary Z (2011) Herbal Medicines in Diabetes. IJDO 3:88–95Google Scholar
  5. Barrett-Lennard EG (2002) Restoration of saline land through revegetation. Agric Water Manag 53:213–226CrossRefGoogle Scholar
  6. Belkheiri O, Mulas M (2011) The effects of salt stress on growth, water relations and ion accumulation in two halophyte Atriplex species. Environ Exp Bot (in press). http://dx.doi.org/10.1016/j
  7. Ben Hassine A, Ghanem ME, Bouzid S, Lutts S (2008) An inland and a coastal population of the Mediterranean xero-halophyte species Atriplex halimus L. differ in their ability to accumulate proline and glycinebetaine in response to salinity and water stress. J Exp Bot 59:1315–1326PubMedCrossRefGoogle Scholar
  8. Ben Salem H, Nefzaoui A, El-Mastouri A, Ben Salem L (2005) Nutritive value, behavior, and growth of Barbarine lambs fed on oldman saltbush (Atriplex nummularia L.) and supplemented or not with barley grains or spineless cactus (Opuntia ficus-indica F. inermis) pads. Small Rumin Res 59:229–237CrossRefGoogle Scholar
  9. Ben Salem H, Norman HC, Nefzaoui A, Mayberry DE, Pearce KL, Revell DK (2010) Potential use of oldman saltbush (Atriplex nummularia Lindl.) in sheep and goat feeding. Small Rumin Res 91:13–28CrossRefGoogle Scholar
  10. Benhammou N, Fawzia AB, Tatjana KP (2009) Antioxidant activity of methanolic extracts and some bioactive compounds of Atriplex halimus. Comptes Rendus Chimie 12:1259–1266CrossRefGoogle Scholar
  11. Benzarti M, Ben Rejeb K, Debez A, Messedi D, Abdelly C (2012) Photosynthetic activity and leaf antioxidative responses of Atriplex portulacoides subjected to extreme salinity. Acta Physiol Plant. doi:1007/s11738-012-0963-5Google Scholar
  12. Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plant cells. Biochim Biophys Acta 1465:140–151PubMedCrossRefGoogle Scholar
  13. Boughalleb N, Trabelsi L, Harzallah-Skhiri F (2009) Antifungal activity from polar and non-polar extracts of some Chenopodiaceae wild species growing in Tunisia. Nat Prod Res 23:988–997PubMedCrossRefGoogle Scholar
  14. Brown JJ, Glen EP, Fitzsimmons KM, Smith S (1999) Halophytes for the treatment of saline aquaculture effluent. Aquaculture 175:255–268CrossRefGoogle Scholar
  15. Bylka W (2004) A new acylated flavonol diglycosides from Atriplex littoralis. Acta Physiol Plant 24:393–398Google Scholar
  16. Bylka W, Stobiecki M, Franski R (2001) Sulphated flavonoid glycosides from leaves of Atriplex hortensis. Acta Physiol Plant 23:285–290CrossRefGoogle Scholar
  17. Byrne M, Hankinson M, Sampson JF, Stankowski S (2008) Microsatellite markers isolated from a polyploidy saltbush, Atriplex nummularia Lindl. (Chenopodiaceae). Mol Ecol Resour 8:1426–1428PubMedCrossRefGoogle Scholar
  18. Cambrollé J, Mancilla-Leytón JM, Muñoz-Vallés S, Luque T, Figueroa ME (2012a) Tolerance and accumulation of copper in the salt-marsh shrub Halimione portulacoides. Mar Pollut Bull 64:721–728CrossRefGoogle Scholar
  19. Cambrollé J, Mancilla-Leytón JM, Muñoz-Vallés S, Luque T, Figueroa ME (2012b). Zinc tolerance and accumulation in the salt-marsh shrub Halimione portulacoides. Chemosphere 86:867–874CrossRefGoogle Scholar
  20. Capua CJ, Hopson NP, Malcolm MGS, Johnston GR, KimL GB, Lee CM, Booth GM (2010). Cytotoxicity of Atriplex confertifolia. J Toxicol 1–7. doi:10.1155/2010/976548Google Scholar
  21. Casas AM, Nelson DE, Raghothama KG, D’Urzo MP, Singh NK, Bressan RA, Hasegawa PM (1992) Expression of osmotin-like genes in the halophyte Atriplex nummularia L. Plant Physiol 99:329–337PubMedCrossRefGoogle Scholar
  22. Chisci GC, Bazzoffi P, Pagliai M, Papini R, Pellegrini S, Vignozzi N (2001) Association of Sulla and Atriplex shrub for the physical improvement of clay soils and environmental protection in central Italy. Agric Ecosyst Environ 84:45–53CrossRefGoogle Scholar
  23. Debez A, Huchzermeyer B, Abdelly C, Koyro HW (2011) Current challenges and future opportunities for a sustainable utilization of halophytes. In: Öztürk M et al (ed) Sabkha ecosystems, tasks for vegetation science 34. Vol 46, pp 59–77Google Scholar
  24. Demiral T, Türkan I (2004) Does exogenous glycinebetaine affect antioxidative system of rice seedlings under NaCl treatment. J Plant Physiol 6:1089–1100CrossRefGoogle Scholar
  25. El Shaer HM (2010) Halophytes and salt-tolerant plants as potential forage for ruminants in the Near East region. Small Rumin Res 91:3–12CrossRefGoogle Scholar
  26. Fitzsimmons K, Lovely C, Glenn E (1998) Growth differences among widely separated geographic accessions of fourwing saltbush (Atriplex canescens) in the Great Basin Desert, New Mexico, USA. Arid Soil Res Reah 12:87–94Google Scholar
  27. Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963PubMedCrossRefGoogle Scholar
  28. Fu X-Z, Khan EU, Hu S-S, Fan Qi-J, Liu Ji-H (2011) Overexpression of the betaine aldehyde dehydrogenase gene from Atriple hortensis enhances salt tolerance in the transgenic trifoliate orange (Poncirus trifoliate L. Raf.). Environ Exp Bot 74:106–113CrossRefGoogle Scholar
  29. Gardea-Torresdey JL, Peralta-Videab JR, de la Rosa G, Parsons JG (2005) Phytoremediation of heavy metals and study of the metal coordination by X-ray absorption spectroscopy. Coord Chem Rev 249:1797–1810CrossRefGoogle Scholar
  30. Gharaibeh MA, Eltaif NI, Albalasmeh AA (2011) Reclamation of highly calcareous saline sodic soil using Atriplex halimus and by-product gypsum. Int J Phytoremediation 13:873–883PubMedCrossRefGoogle Scholar
  31. Glenn EP, Brown JJ (1998) Effects of soil salt levels on the growth and water use efficiency of Atriplex canescens (Chenopodiaceae) varieties in drying soil. Am J Bot 85:10–16PubMedCrossRefGoogle Scholar
  32. Glenn EP, Nelson SG, Ambrose B, Martinez R, Soliz D, Pabendinskas V, Hultine K (2012) Comparison of salinity tolerance of three Atriplex spp. in well-watered and drying soils. Environ Exp Bot 83:62–72CrossRefGoogle Scholar
  33. Guo BH, Zhang YM, Li HJ, Du LQ (2000) Transformation of wheat with a gene encoding for the betaine aldehyde dehydrogenase (BADH). Acta Bot Sin 42:279–283Google Scholar
  34. Guo Y, Zhang L, Xiao G, Chen SY (1997) Expression of the BADH gene and salinity tolerance in rice transgenic plants. Sci China 27:151–155Google Scholar
  35. Hamada A, Shono M, Xia T, Ohta M, Hayashi Y, Tanaka A, Hayakawa T (2001) Isolation and characterization of a Na+/H+antiporter gene from the halophyte Atriplex gmelini. Plant Mol Biol 46:35–42PubMedCrossRefGoogle Scholar
  36. Hyder SZ (1981) Preliminary observations on the performance of some exotic species of Atriplex in Saudi Arabia. J Range Manage 34:208–210CrossRefGoogle Scholar
  37. Jacobs GA, Smith CJ (1977) Utilization of four Atriplex species by sheep. Agroanimalia 9:37–43Google Scholar
  38. Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants. CRC Press, FloridaGoogle Scholar
  39. Kachout SS, Ben Mansoura A, Mechergui R, Leclerc JC, Rejeb MN, Ouerghi Z (2012) Accumulation of Cu, Pb, Ni and Zn in the halophyte plant Atriplex grown on polluted soil. J Sci Food Agric 92:336–342PubMedCrossRefGoogle Scholar
  40. Kadereit G, Mavrodiev EV, Zacharias EH, Sukhorukov AP (2010) Molecular phylogeny of Atripliceae (Chenopodioideae, Chenopodiaceae): implications for systematics, biogeography, flower and fruit evolution, and the origin of C4 photosynthesis. Am J Bot 97:1664–1687PubMedCrossRefGoogle Scholar
  41. Kandil HM, El-Shaer HM (1989) The utilization of Atriplex nummularia by goats and sheep in Sinai. Proceedings of international symposium on the constraints and possibilities of ruminant production in the dry tropics, Cairo, Egypt, pp 71–73Google Scholar
  42. Keckeis K, Sarker SD, Dinan LN (2000) Phytoecdysteroids from Atriplex nummularia. Fitoterapia 71:456–458PubMedCrossRefGoogle Scholar
  43. Khan MA, Ungar IA, Showalter M (2000) Effects of salinity on growth, water relation and ion accumulation of the subtropical perennial Halophyte, Atriplex griffithii var. stocksii. Ann Bot 85:225–232CrossRefGoogle Scholar
  44. Khedr AHA, Serag MS, Nemat-Alla MM, Abo-Elnaga AZ, Nada RM, Quick WP, Abogadallah GM (2011) A DREB gene from the xero-halophyte Atriplex halimus is induced by osmotic but not ionic stress and shows distinct differences from glycophytic homologues. Plant Cell Tiss Organ Cult 106:191–206CrossRefGoogle Scholar
  45. Ksouri R, Ksouri WM, Jallali I, Debez A, Magné C, Hiroko I, Abdelly C (2011) Medicinal halophytes: potent source of health promoting biomolecules with medical, nutraceutical and food applications. Crit Rev Biotechnol. doi:10.3109/07388551.2011.630647Google Scholar
  46. Le Houérou HN (1992) The role of saltbushes (Atriplex spp.) in arid land rehabilitation in the Mediterranean Basin: a review. Agrofor Syst 18:107–148CrossRefGoogle Scholar
  47. Lefèvre I, Marchal G, Meerts P, Corréal E, Lutts S (2009) Chloride salinity reduces cadmium accumulation by the Mediterranean halophyte species Atriplex halimus L. Environ Exp Bot 65:142–152CrossRefGoogle Scholar
  48. Liu Z-H, Zhang H-M, Li G-L, Guo X-L, Chen S-Y, Liu G-B, Zhang Y-M (2011) Enhancement of salt tolerance in alfalfa transformed with the gene encoding for betaine aldehyde dehydrogenase. Euphytica 178:363–372CrossRefGoogle Scholar
  49. Lomonte C, Sgherri C, Baker AJM, Kolev SD, Navari-Izzo F (2010) Antioxidative response of Atriplex codonocarpa to mercury. Environ Exp Bot 69:9–16CrossRefGoogle Scholar
  50. Luque CJ, Castellanos EM, Castillo JM, Gonzalez M, Gonzalez-Vilches MC, Figueroa ME (1999) Metals in halophytes of a contaminated estuary (odiel saltmarshes, SW Spain). Mar Pollut Bull 38:49–51Google Scholar
  51. Lutts S, Lefèvre I, Delpérée C, Kivits S, Dechamps C, Robledo A et al (2004) Heavy metal accumulation by the halophyte species Mediterranean saltbush. J Environ Qual 33:1271–1279PubMedCrossRefGoogle Scholar
  52. Maganhotto de Souza Silva CM, Vieira RF, Oliveira PR (2008) Salinity, sodicity and microbiological properties of an Ultisol cultivated with saltbush and irrigated with saline effluents. Pesqui Agropecu Bras 43:1389–1396Google Scholar
  53. Malcolm CV, Clarke AJ, D’Antuono MF, Swaan TC (1988) Effects of plant spacing and soil conditions on the growth of five Atriplex species. Agric Ecosyst Environ 21:265–279CrossRefGoogle Scholar
  54. Manousaki E, Kalogerakis N (2009) Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.) metal uptake in relation to salinity. Environ Sci Poll Res 16:844–854CrossRefGoogle Scholar
  55. Martinez JP, Ledent JF, Bajji M, Kinet JM, Lutts S (2003) Effect of water stress on growth, Na and K accumulation and water use efficiency in relation to osmotic adjustment in two populations of Atriplex halimus L. Plant Growth Regul 41:63–73CrossRefGoogle Scholar
  56. Montgomery KR, Cheo PC (1969) Moisture and salt effects on fire retardance in plants. Am J Bot 56:1028–1032CrossRefGoogle Scholar
  57. Niu X, Wang W, Bressan RA, Hasegawa PM (1994) Molecular cloning and expression of a glyceraldehydes-3-phosphate dehydrogenase gene in a desert halophyte, Atriplex nummularia L. Plant Physiol 104:1105–1106PubMedCrossRefGoogle Scholar
  58. Niu X, Zhu JK, Narasimhan ML, Bressan RA, Hasegawa PM (1993) Plasma- membrane H+-ATPase gene expression is regulated by NaCl in cells of the halophyte Atriplex nummularia L. Planta 190:433–438PubMedCrossRefGoogle Scholar
  59. Norman HC, Masters DG, Wilmot MG, Rintoul AJ (2008) Effect of supplementation with grain, hay or straw on the performance of weaner Merino sheep grazing old man (Atriplex nummularia) or river (Atriplex amnicola) saltbush. Grass Forage Sci 63:179–192CrossRefGoogle Scholar
  60. Ohta M, Hayashi Y, Nakashima A, Hamada A, Tanaka A, Nakamura T, Hayakawa T (2002) Introduction of a Na+/H+antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Letters 532:279–282PubMedCrossRefGoogle Scholar
  61. Ortíz-Dorda J, Martínez-Mora C, Correal E, Simón B, Cenis JL (2005) Genetic Structure of Atriplex halimus Populations in the Mediterranean Bassin. Ann Bot 95:827–834PubMedCrossRefGoogle Scholar
  62. Pitman MG, Lauchli A (2002) Global impact of salinity and agricultural ecosystems. In: Lauchli A, Luttge V (eds) Salinity: environment plants molecules. Kluwer, The Netherlands, pp 3–20Google Scholar
  63. Reboreda R, Caçador I (2007) Halophyte vegetation influences in salt marsh retention capacity for heavy metals. Environ Pollut 146:147–154PubMedCrossRefGoogle Scholar
  64. Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol 44:357–384CrossRefGoogle Scholar
  65. Riasi A, Mesgaran MD, Stern MD, Moreno MJR (2008) Chemical composition, in situ ruminal degradability and post-ruminal disappearance of dry matter and crude protein from the halophytic plants Kochia scoparia, Atriplex dimorphostegia, Suaeda arcuata and Gamanthus gamacarpus. Anim Feed Sci Technol 141:209–219CrossRefGoogle Scholar
  66. Sakamoto A, Murata N (2000) Genetic engineering of glycinebetaine synthesis in plants: current status and implications for enhancement of stress tolerance. J Exp Bot 51:81–88PubMedCrossRefGoogle Scholar
  67. Salem AZM, Hassan AA, Khalil MS, Gado HM, Alsersy H, Simbaya J (2012) Effects of sun-drying and exogenous enzymes on nutrients intake, digestibility and nitrogen utilization in sheep fed Atriplex halimus foliages. Anim Feed Sci Tech 171:128–135CrossRefGoogle Scholar
  68. Sameni AM, Soleimani R (2007) Effect of salinity and some chemical properties of the under- and intercanopy soils on range plants in a dry region of Southern Iran. Commun Soil Sci Plan 38:15–33CrossRefGoogle Scholar
  69. Sampson JF, Byrne M (2012) Genetic diversity and multiple origins of polyploidy Atriplex nummularia Lindl. (Chenopodiaceae). Biol J Linn Soc 105:218–230CrossRefGoogle Scholar
  70. Sawalha MF, Peralta-Videa JR, Romeor-Gonzalez J, Gardea-Torresdey JL (2006) Biosorption of Cd(II), Cr(II), and Cr(VI) by Saltbush (Atriplex Carnescens) biomass: thermodynamic and isotherm studies. Colloid Interf Sci 300:100–104CrossRefGoogle Scholar
  71. Shen YG, Du BX, Zhang WK, Zhang JS, Chen SY (2002) AhCMO, regulated by stresses in Atriplex hortensis, can improve drought tolerance in transgenic tobacco. Theor Appl Genet 105:815–821.PubMedCrossRefGoogle Scholar
  72. Shen YG, Zhang WK, Yan DQ, Du BX, Zhang JS, Liu Q, Chen SY (2003) Characterization of a DRE-binding transcription factor from a halophyte Atriplex hortensis. Theor Appl Genet 107:155–161PubMedGoogle Scholar
  73. Shi H, Zhu JK (2002) Regulation of expression of the vacuolar Na+/H+antiporter gene AtNHX1 by salt stress and abscisic acid. Plant Mol Biol 50:543–550PubMedCrossRefGoogle Scholar
  74. Siddiqui BS, Ahmed S, Ghiasuddin M, Khan AU (1994) Triterpenoids of Atriplex stocksii. Phytochemistry 37:1123–1125CrossRefGoogle Scholar
  75. Silveira JAG, Araújo SAM, Lima GPMS, Viégas RA (2009) Roots and leaves display contrasting osmotic adjustment mechanisms in response to NaCl-salinity in Atriplex nummularia. Environ Exp Bot 66:1–8CrossRefGoogle Scholar
  76. Slavich PG, Smith KS, Tyerman SD, Walker GR (1999) Water use of grazed saltbush plantations with saline watertable. Agricu Water Manag 39:169–185CrossRefGoogle Scholar
  77. Smaoui A, Barhoumi Z, Rabhi M, Abdelly C (2011) Localization of potential ion transport pathways in vesicular trichome cells of Atriplex halimus L. Protoplasma 48:363–372Google Scholar
  78. Sousa AI, Caçador I, Lillebø, AI, Pardal MA (2008) Heavy metal accumulation in Halimione portulacoides: intra- and extra-cellular metal binding sites. Chemosphere 70:850–857PubMedCrossRefGoogle Scholar
  79. Tabuchi T, Kawaguchi Y, Azuma T, Nanmori T, Yasuda T (2005) Similar regulation patterns of choline monooxygenase, phosphoethanolamine N-methyltransferase and S-adenosyl-L-methionine synthetase in leaves of the halophyte Atriplex nummularia L. Plant Cell Physiol 46:505–513PubMedCrossRefGoogle Scholar
  80. van der Baan A, van Niekerk WA, Rethman NFG, Coertze RJ (2004) The determination of digestibility of Atriplex nummularia cv. De Kock (Oldman’s Saltbush) using different in invitro techniques. South Afr J Anim Sci 34:95–97Google Scholar
  81. Vickerman DB, Shannon MC, Banuelos GS, Grieve CM, Trumble JT (2002) Evaluation of Atriplex lines for selenium accumulation, salt tolerance and suitability for a key agricultural insect pest. Environ Poll 120:463–473CrossRefGoogle Scholar
  82. Vromman D, Flores-Bavestrello A, Šlejkovec Z, Lapaille S, Teixeira-Cardoso C, Briceño M, Kumar M, Martínez J-P, Lutts S (2011) Arsenic accumulation and distribution in relation to young seedling growth in Atriplex atacamensis Phil. Sci Total Environ 412–413:286–295CrossRefGoogle Scholar
  83. Wang LW, Showalter AM (2004) Cloning and salt-induced, ABA-independent expression of choline mono-oxygenase in Atriplex prostrata. Physiol Plant 120:405–412PubMedCrossRefGoogle Scholar
  84. Welch BL (1978) Relationships of soil salinity, ash, and crude protein in Atriplex canescens. J Range Manage 31:132–133CrossRefGoogle Scholar
  85. Xiao G, Zhang GY, Liu FH, Chen SY (1995) The study of the BADH gene in Atriplex hortensis. Chin Sci Bull 40:741–745Google Scholar
  86. Xu J, Yin H, Yang L, Xie Z, Liu X (2011) Differential salt tolerance in seedlings derived from dimorphic seeds of Atriplex centralasiatica: from physiology to molecular analysis. Planta 233:859–871PubMedCrossRefGoogle Scholar
  87. Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. The Plant Cell 6:251–264PubMedGoogle Scholar
  88. Yang X, Wen X, Gong H, Lu Q, Yang Z, Tang Y, Liang Z, Lu C (2007) Genetic engineering of the biosynthesis of glycinebetaine enhances thermotolerance of photosystem II in tobacco plants. Planta 225:719–733Google Scholar
  89. Yin X, Zhao Y, Luo D, Zhang H (2002) Isolating the promoter of a stress-induced gene encoding betaine aldehyde dehydrogenase from the halophyte Atriplex centralasiatica Iljin. Biochim Biophys Acta 1577:452–456Google Scholar
  90. Zhang H, Dong H, Li W, Sun Y, Chen S, Kong X (2009) Increased glycine betaine synthesis and salinity tolerance in AhCMO transgenic cotton lines. Mol Breed 23:289–298CrossRefGoogle Scholar
  91. Zucca C, Julitta F, Previtali F (2011) Land restoration by fodder shrubs in a semi-arid agro-pastoral area of Morocco. Effects on soils. Catena 87:306–312CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Maali Benzarti
    • 1
  • Kilani Ben Rejeb
    • 1
    • 2
  • Ahmed Debez
    • 1
  • Chedly Abdelly
    • 1
  1. 1.Laboratoire des Plantes ExtrêmophilesCentre de Biotechnologie de Borj-Cedria (CBBC)Hammam-LifTunisia
  2. 2.Physiologie Cellulaire et Moléculaire des Plantes, UR5, EAC 7180 CNRSUniversité Pierre et Marie Curie (UPMC)Paris cedex 05France

Personalised recommendations