Advertisement

Tabu Search

  • Michel Gendreau
  • Jean-Yves Potvin
Chapter

Abstract

This chapter is an introductory tutorial on tabu search. It emphasizes the basic mechanisms of this search method and illustrates their application on two classical combinatorial problems. Some more advanced concepts, like diversification and intensification, are also introduced. The chapter ends with useful tips for designing a successful tabu search implementation.

Keywords

Search Space Tabu Search Neighborhood Structure Tabu List Hill Climbing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alba E (ed) (2005) Parallel metaheuristics: a new class of algorithms. Wiley, HobokenGoogle Scholar
  2. Anderson EJ, Glass CA, Potts CN (1997) Machine scheduling, in local search in combinatorial optimization. In: Aarts EHL, Lenstra JK (eds). Wiley, New York, pp 361–414Google Scholar
  3. Ateme-Nguema B, Dao T-M (2009) Quantized Hopfield networks and tabu search for manufacturing cell formation problems. Int J Product Econ 121:88–98CrossRefGoogle Scholar
  4. Battiti R, Tecchiolli G (1994) The reactive tabu search. ORSA J Comput 6:126–140CrossRefGoogle Scholar
  5. Blum C, Blesa Aguilera MJ, Roli A, Sampels M (eds) (2008) Hybrid metaheuristics: an emerging approach to optimization. Springer, BerlinGoogle Scholar
  6. Burke E, De Causmaecker P, Vanden Berghe G (1998) A Hybrid Tabu Search Algorithm for the Nurse Rostering Problem. In: Selected papers from the 2nd Asia Pacific conference on simulated evolution and learning, LNAI 1585. Springer, Berlin, Canberra, Australia, pp 187–194Google Scholar
  7. Crainic TG, Gendreau M (1999) Towards an evolutionary method—cooperative multi-thread parallel tabu search heuristic hybrid. In: Voss S et al (eds) Meta-heuristics: advances and trends in local search paradigms for optimization. Kluwer, Norwell, pp 331–344CrossRefGoogle Scholar
  8. Crainic TG, Gendreau M, Soriano P, Toulouse M (1993) A tabu search procedure for multicommodity location/allocation with balancing requirements. Ann Oper Res 41:359–383CrossRefGoogle Scholar
  9. Crainic TG, Toulouse M, Gendreau M (1997) Toward a taxonomy of parallel tabu search heuristics. INFORMS J Comput 9:61–72CrossRefGoogle Scholar
  10. Crainic TG, Gendreau M, Farvolden JM (2000) Simplex-based tabu search for the multicommodity capacitated fixed charge network design problem. INFORMS J Comput 12:223–236CrossRefGoogle Scholar
  11. Crainic TG, Gendreau M, Rousseau L-M (eds) (2010) J Heuristics 16:235–535 (Special issue: Recent advances in metaheuristics)Google Scholar
  12. Cung V-D, Martins SL, Ribeiro CC, Roucairol C (2002) Strategies for the parallel implementation of metaheuristics. In: Ribeiro CC, Hansen P (eds) Essays and surveys in metaheuristics. Kluwer, Norwell, pp 263–308CrossRefGoogle Scholar
  13. de Werra D, Hertz A (1989) Tabu search techniques: a tutorial and an application to neural networks. OR Spektrum 11:131–141CrossRefGoogle Scholar
  14. Doerner KF, Gendreau M, Greistorfer P, Gutjahr WJ, Hartl RF, Reimann M (eds) (2007) Metaheuristics: progress in complex systems optimization. Springer, New YorkGoogle Scholar
  15. Dorigo M (1992) Optimization, learning and natural algorithms. PhD Dissertation, Departimento di Elettronica, Politecnico di MilanoGoogle Scholar
  16. Dueck G, Scheuer T (1990) Threshold accepting: a general purpose optimization algorithm appearing superior to simulated annealing. J Comput Phys 90:161–175CrossRefGoogle Scholar
  17. Fleurent C, Ferland JA (1996) Genetic and hybrid algorithms for graph colouring. Ann Oper Res 63:437–461CrossRefGoogle Scholar
  18. Friden C, Hertz A, de Werra D (1989) STABULUS: a technique for finding stable sets in large graphs with tabu search. Computing 42:35–44CrossRefGoogle Scholar
  19. Gandibleux X, Jaszkiewicz A, Freville A, Slowinski R (eds) (2000) J Heuristics 6:291–431 (Special issue: Multiple objective metaheuristics)Google Scholar
  20. Gendreau M (2002) Recent advances in tabu search. In: Ribeiro CC, Hansen P (eds) Essays and surveys in metaheuristics. Kluwer, Norwell, pp 369–377CrossRefGoogle Scholar
  21. Gendreau M, Soriano P, Salvail L (1993) Solving the maximum clique problem using a tabu search approach. Ann Oper Res 41:385–403CrossRefGoogle Scholar
  22. Gendreau M, Hertz A, Laporte G (1994) A tabu search heuristic for the vehicle routing problem. Manage Sci 40:1276–1290CrossRefGoogle Scholar
  23. Gendreau M, Guertin F, Potvin J-Y, Séguin R (2006) Neighborhood search heuristics for a dynamic vehicle dispatching problem with pick-ups and deliveries. Transp Res C 14:157–174CrossRefGoogle Scholar
  24. Glover F (1977) Heuristics for integer programming using surrogate constraints. Decis Sci 8:156–166CrossRefGoogle Scholar
  25. Glover F (1986) Future paths for integer programming and links to artificial intelligence. Comput Oper Res 13:533–549CrossRefGoogle Scholar
  26. Glover F (1989) Tabu search I. ORSA J Comput 1:190–206CrossRefGoogle Scholar
  27. Glover F (1990) Tabu search II. ORSA J Comput 2:4–32CrossRefGoogle Scholar
  28. Glover F (1992) Ejection chains, reference structures and alternating path methods for traveling salesman problems. University of Colorado Report (Shortened version published in Discret Appl Math 65:223–253, 1996)Google Scholar
  29. Glover F, Kochenberger GA (eds) (2003) Handbook of metaheuristics. Kluwer, NorwellGoogle Scholar
  30. Glover F, Laguna M (1993) Tabu search. In: Reeves CR (ed) Modern heuristic techniques for combinatorial problems. Halsted Press, New York, pp 70–150Google Scholar
  31. Glover F, Laguna M (1997) Tabu search. Kluwer, NorwellCrossRefGoogle Scholar
  32. Glover F, Laguna M, Taillard ED, de Werra D (eds) (1993) Tabu search. Ann Oper Res 41, Baltzer Science, Basel, pp 1–490Google Scholar
  33. Glover F, Taillard ED, de Werra D (1993) A user’s guide to tabu search. Ann Oper Res 41:3–28CrossRefGoogle Scholar
  34. Grünert T (2002) Lagrangean tabu search. In: Ribeiro CC, Hansen P (eds) Essays and surveys in metaheuristics. Kluwer, Norwell, pp 379–397CrossRefGoogle Scholar
  35. Hertz A, de Werra D (1987) Using tabu search for graph coloring. Computing 39:345–351CrossRefGoogle Scholar
  36. Hertz A, de Werra D (1991) The tabu search metaheuristic: how we used it. Ann Math Artif Intell 1:111–121CrossRefGoogle Scholar
  37. Hindsberger M, Vidal RVV (2000) Tabu search—a guided tour. Control Cybern 29:631–651Google Scholar
  38. Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann ArborGoogle Scholar
  39. Ibaraki T, Nonobe K, Yagiura M (eds) (2005) Metaheuristics: progress as real problem solvers. Springer, New YorkGoogle Scholar
  40. Jaziri W (2008) Local search techniques: focus on tabu search. In-Teh, CroatiaCrossRefGoogle Scholar
  41. Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680CrossRefGoogle Scholar
  42. Laporte G, Osman IH (eds) (1996) Metaheuristics in combinatorial optimization. Ann Oper Res 63, Baltzer Science, Basel, pp 1–630Google Scholar
  43. Lokketangen A, Glover F (1996) Probabilistic move selection in tabu search for 0/1 mixed integer programming problems. In: Osman IH, Kelly JP (eds) Meta-heuristics: theory and applications. Kluwer, Norwell, pp 467–488CrossRefGoogle Scholar
  44. Lokketangen A, Woodruff DL (1996) Progressive hedging and tabu search applied to mixed integer (0,1) multistage stochastic programming. J Heuristics 2:111–128CrossRefGoogle Scholar
  45. Nilsson NJ (1980) Principles of artificial intelligence. Morgan Kaufmann, Los AltosGoogle Scholar
  46. Osman IH, Kelly JP (eds) (1996) Meta-heuristics: theory and applications. Kluwer, NorwellGoogle Scholar
  47. Pardalos PM, Resende MGC (eds) (2002) Handbook of applied optimization. Oxford University Press, New YorkGoogle Scholar
  48. Pesant G, Gendreau M (1999) A constraint programming framework for local search methods. J Heuristics 5:255–280CrossRefGoogle Scholar
  49. Rego C, Alidaee B (eds) (2005) Metaheuristic optimization via memory and evolution: tabu search and scatter search. Kluwer, NorwellGoogle Scholar
  50. Resende MGC, de Sousa JP (eds) (2004) Metaheuristics: computer decision-making, Kluwer, NorwellGoogle Scholar
  51. Ribeiro CC, Hansen P (eds) (2002) Essays and surveys in metaheuristics. Kluwer, NorwellGoogle Scholar
  52. Rochat Y, Taillard ED (1995) Probabilistic diversification and intensification in local search for vehicle routing. J Heuristics 1:147–167CrossRefGoogle Scholar
  53. Rolland E (1996) A tabu search method for constrained real-number search: applications to portfolio selection, Working Paper, The Gary Anderson Graduate School of Management, University of California, RiversideGoogle Scholar
  54. Skorin-Kapov J (1990) Tabu search applied to the quadratic assignment problem. ORSA J Comput 2:33–45CrossRefGoogle Scholar
  55. Soriano P, Gendreau M (1996) Diversification strategies in tabu search algorithms for the maximum clique problems. Ann Oper Res 63:189–207CrossRefGoogle Scholar
  56. Soriano P, Gendreau M (1997) Fondements et applications des méthodes de recherche avec tabous. RAIRO—Recherche Opérationnelle 31:133–159Google Scholar
  57. Taillard ED (1990) Some efficient heuristic methods for the flow shop sequencing problem. Eur J Oper Res 47:65–74CrossRefGoogle Scholar
  58. Taillard ED (1991) Robust taboo search for the quadratic assignment problem. Parallel Comput 17:443–455CrossRefGoogle Scholar
  59. Vaessens RJM, Aarts EHL, Lenstra JK (1996) Job shop scheduling by local search. INFORMS J Comput 8:302–317CrossRefGoogle Scholar
  60. Voss S, Martello S, Osman IH, Roucairol C (eds) (1999) Meta-heuristics: advances and trends in local search paradigms for optimization. Kluwer, NorwellGoogle Scholar
  61. Wang Y, Li L, Ni J, Huang S (2009) Feature selection using tabu search with long-term memories and probabilistic neural networks. Pattern Recognit Lett 30:661–670CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Département de mathématiques et de génie industrielÉcole Polytechnique de Montréal and CIRRELTMontréalCanada
  2. 2.Département d’informatique et de recherche opérationnelleUniversité de Montréal and CIRRELTMontréalCanada

Personalised recommendations