Simulated Annealing

  • Emile Aarts
  • Jan Korst
  • Wil Michiels


Many problems in engineering, planning and manufacturing can be modeled as that of minimizing or maximizing a cost function over a finite set of discrete variables. This class of so-called combinatorial optimization problems has received much attention over the years and major achievements have been made in its analysis (Ausiello et al.


  1. Aarts EHL, Korst JHM (1989) Simulated annealing and Boltzmann machines. Wiley, ChichesterGoogle Scholar
  2. Aarts EHL, van Laarhoven PJM (1985) Statistical cooling: a general approach to combinatorial optimization problems. Philips J Res 40:193–226Google Scholar
  3. Aarts EHL, Lenstra JK (eds) (2003) Local search in combinatorial optimization. Princeton University Press, PrincetonGoogle Scholar
  4. Aarts EHL, Korst JHM, van Laarhoven PJM (1988) A quantitative analysis of the simulated annealing algorithm: a case study for the traveling salesman problem. J Stat Phys 50:189–206CrossRefGoogle Scholar
  5. Andersen B (1996) Finite-time thermodynamics and simulated annealing. In: Shiner JS (ed) Entropy and entropy generation. Kluwer, Dordrecht, pp 111–127Google Scholar
  6. Anily S, Federgruen A (1987) Simulated annealing methods with general acceptance probabilities. J Appl Probab 24:657–667CrossRefGoogle Scholar
  7. Arora S, Barak B (2009) Computational complexity: a modern approach. Cambridge University Press, Cambridge/New YorkCrossRefGoogle Scholar
  8. Ausiello G, Crescenzi P, Gambosi G, Kann V, Marchetti-Spaccamela A, Protasi M (1999) Complexity and approximation: combinatorial optimization problems and their approximability properties. Springer, BerlinGoogle Scholar
  9. Azencott R (1992) Simulated annealing: parallelization techniques. Wiley, ChichesterGoogle Scholar
  10. Binder K (1978) Monte Carlo methods in statistical physics. Springer, BerlinGoogle Scholar
  11. Černý V (1985) Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm. J Optim Theory Appl 45:41–51CrossRefGoogle Scholar
  12. Collins NE, Eglese RW, Golden BL (1988) Simulated annealing: an annotated bibliography. Am J Math Manage Sci 8:209–307Google Scholar
  13. Connors DP, Kumar PR (1987) Simulated annealing and balance of recurrence order in time-inhomogeneous Markov chains. In: Proceedings of the 26th IEEE conference on decision and control, Los Angeles, pp 2261–2263Google Scholar
  14. Eglese RW (1990) Simulated annealing: a tool for operational research. Eur J Oper Res 46:271–281CrossRefGoogle Scholar
  15. Feller W (1950) An introduction to probability theory and its applications, vol 1. Wiley, New YorkGoogle Scholar
  16. Fox BL (1993) Integrating and accelerating tabu search, simulated annealing, and genetic algorithms. In: Glover F et al (eds) Tabu search. Annals of operations research, vol 41. Baltzer, Basel, pp 47–67Google Scholar
  17. Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. Freeman, San FranciscoGoogle Scholar
  18. Gidas B (1985) Nonstationary Markov chains and convergence of the annealing algorithm. J Stat Phys 39:73–131CrossRefGoogle Scholar
  19. Hajek B (1985) A tutorial survey of the theory and application of simulated annealing. In: Proceedings of the 24th IEEE conference on decision and control, Fort Lauderdale, pp 755–760Google Scholar
  20. Hajek B (1988) Cooling schedules for optimal annealing. Math Oper Res 13:311–329CrossRefGoogle Scholar
  21. Isaacson D, Madsen R (1976) Markov chains. Wiley, New YorkGoogle Scholar
  22. Kernighan BW, Lin S (1970) An efficient heuristic procedure for partitioning graphs. Bell Syst Tech J 49:291–307CrossRefGoogle Scholar
  23. Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680CrossRefGoogle Scholar
  24. Lin S (1965) Computer solutions of the traveling salesman problem. Bell Syst Tech J 44:2245–2269CrossRefGoogle Scholar
  25. Lin S, Kernighan BW (1973) An effective heuristic algorithm for the traveling salesman problem. Oper Res 21:498–516CrossRefGoogle Scholar
  26. Lundy M, Mees A (1986) Convergence of an annealing algorithm. Math Program 34:111–124CrossRefGoogle Scholar
  27. Metropolis M, Rosenbluth A, Rosenbluth M, Teller A, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092CrossRefGoogle Scholar
  28. Michiels W, Aarts E, Korst J (2007) Theoretical aspects of local search. Springer, BerlinGoogle Scholar
  29. Mitra D, Romeo F, Sangiovanni-Vincentelli AL (1986) Convergence and finite-time behavior of simulated annealing. Adv Appl Probab 18:747–771CrossRefGoogle Scholar
  30. Nourani Y, Andersen B (1998) A comparison of simulated annealing cooling strategies. J Phys A 31:8373–8385CrossRefGoogle Scholar
  31. Orosz JE, Jacobson SH (2002) Finite-time performance analysis of static simulated annealing algorithms. Comput Optim Appl 21:21–53CrossRefGoogle Scholar
  32. Park M-W, Kim Y-D (1998) A systematic procedure for setting parameters in simulated annealing algorithms. Comput Oper Res 25:207–217CrossRefGoogle Scholar
  33. Romeo F, Sangiovanni-Vincentelli A (1991) A theoretical framework for simulated annealing. Algorithmica 6:302–345CrossRefGoogle Scholar
  34. Salamon P, Sibani P, Frost R (2002) Facts, conjectures, and improvements for simulated annealing. SIAM Monographs, PhiladelphiaCrossRefGoogle Scholar
  35. Seneta E (1981) Non-negative matrices and Markov chains, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  36. Steinhöfel K, Albrecht A, Wong CK (1998) On various cooling schedules for simulated annealing applied to the job shop problem. In: Luby M et al (eds) Randomization and approximation techniques in computer science. Lecture notes in computer science, vol 1518. Springer, Berlin, pp 260–279CrossRefGoogle Scholar
  37. Strenski PN, Kirkpatrick S (1991) Analysis of finite length annealing schedules. Algorithmica 6:346–366CrossRefGoogle Scholar
  38. van Laarhoven PJM (1988) Theoretical and computational aspects of simulated annealing. PhD thesis, Erasmus University RotterdamGoogle Scholar
  39. van Laarhoven PJM, Aarts EHL (1987) Simulated annealing: theory and applications. Reidel, DordrechtCrossRefGoogle Scholar
  40. van Laarhoven PJM, Aarts EHL, Lenstra JK (1992) Job shop scheduling by simulated annealing. Oper Res 40:185–201Google Scholar
  41. Vidal RVV (ed) (1993) Applied simulated annealing. Lecture notes in economics and mathematical systems, vol 396. Springer, BerlinGoogle Scholar
  42. Villalobos-Arias M, Coello CA, Hernandez-Lerma O (2006) Asymptotic convergence of a simulated annealing algorithm for multiobjective optimization problems. Math Methods Oper Res 64:353–362CrossRefGoogle Scholar
  43. White SR (1984) Concepts of scale in simulated annealing. In: Proceedings of the IEEE international conference on computer design, New York, pp 646–651Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Eindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Philips Research LaboratoriesEindhovenThe Netherlands
  3. 3.NXPEindhovenThe Netherlands

Personalised recommendations