Introduction

Chapter

Abstract

Search and optimization technologies underpin the development of decision support systems in a wide variety of applications across industry, commerce, science and government. There is a significant level of diversity among optimization and computational search applications. This can be evidenced by noting that a small selection of applications includes transport scheduling, bioinformatics optimization, personnel rostering, medical decision support and timetabling. Later in this introduction we present some recent survey papers for some of these areas and more examples of relevant applications are available in Pardalos and Resende (2002) and Leung (2004).

References

  1. Aarts E, Lenstra JK (eds) (2003) Local search in combinatorial optimization. Princeton University Press, Princeton, New Jersey, USA (first published by Wiley 1997)Google Scholar
  2. Ayob M, Kendall G (2008) A survey of surface mount device placement machine optimisation: machine classification. Eur J Oper Res 186:893–914CrossRefGoogle Scholar
  3. Ayob M, Kendall G (2009) The optimisation of the single surface mount device placement machine in printed circuit board assembly: a survey. Int J Syst Sci 40:553–569Google Scholar
  4. Bennell JA, Oliveira JF (2008) A tutorial in nesting problem: the geometry. Eur J Oper Res 184:397–415CrossRefGoogle Scholar
  5. Bennell JA, Oliveira JF (2009) A tutorial in irregular shape packing problems. J Oper Res Soc 60:S93–S105CrossRefGoogle Scholar
  6. Blum C, Puchinger J, Raidl G, Roli A (2011) Hybrid metaheuristics in combinatorial optimization: a survey. Appl Soft Comput 11:4135–4151CrossRefGoogle Scholar
  7. Bräysy O, Gendreau M (2005a) Vehicle routing problem with time windows, part I: route construction and local search algorithms. Transp Sci 39:104–118CrossRefGoogle Scholar
  8. Bräysy O, Gendreau M (2005b) Vehicle routing problem with time windows, part II: metaheuristics. Transp Sci 39:119–139CrossRefGoogle Scholar
  9. Bronson R, Naadimuthu G (1997) Operations research, Schaum’s outlines, 2nd edn. McGraw-Hill, New YorkGoogle Scholar
  10. Burke EK, Petrovic S (2002) Recent research directions in automated timetabling. Eur J Oper Res 140:266–280CrossRefGoogle Scholar
  11. Burke EK, Kendall G, Newall JP, Hart E, Ross P, Schulenburg S (2003) Hyper-heuristics: an emerging direction in modern search technology. In: Glover F, Kochenberger G (eds) Handbook of metaheuristics, chap 16. Kluwer, Dordrecht, pp 457–474Google Scholar
  12. Burke EK, De Causmaecker P, Vanden Berghe G, Van Landeghem R (2004) The state of the art of nurse rostering. J Sched 7:441–499CrossRefGoogle Scholar
  13. Burke EK, Hyde M, Kendall G, Ochoa G, Ozcan E, Woodward JRA (2010) A Classification of hyper-heuristic approaches. In: Handbook of metaheuristics. Kluwer, Dordrecht, pp 449–468Google Scholar
  14. Burke EK, Gendreau M, Hyde M, Kerdall G, Ochoa G, Ozcan E, QUR (2013) Hyper-heuristics: a survey of the state of the art. J Oper Res Soc, doi:10.1057/jors.2013.71Google Scholar
  15. Callan R (2003) Artificial intelligence. Palgrave Macmillan, LondonGoogle Scholar
  16. Cardoen B, Demeulemeester E, Beliën J (2010) Operating room planning and scheduling: a literature review. Eur J Oper Res 201:921–932CrossRefGoogle Scholar
  17. Carter MW, Price CC (2001) Operations research: a practical introduction. CRC, Boca RatonGoogle Scholar
  18. Cawsey A (1998) The essence of artificial intelligence. Prentice-Hall, Englewood CliffsGoogle Scholar
  19. Dinitz JH, Fronček D, Lamken ER, Wallis WD (2007) Scheduling a tournament. In: Colbourn CJ, Dinitz JH (eds) Handbook of combinatorial designs, 2nd edn. CRC, Boca Raton, pp 591–606Google Scholar
  20. Dowsland KA, Dowsland WB (1992) Packing problems. Eur J Oper Res 56:2–14CrossRefGoogle Scholar
  21. Drexl A, Knust S (2007) Sports league scheduling: graph- and resource-based models. Omega 35:465–471CrossRefGoogle Scholar
  22. Dyckhoff H (1990) A typology of cutting and packing problems. Eur J Oper Res 44:145–159CrossRefGoogle Scholar
  23. Easton K, Nemhauser GL, Trick MA (2004) Sports scheduling. In: Leung JT (ed) Handbook of scheduling. CRC, Boca Raton, 52.1–52.19Google Scholar
  24. Ernst AT, Jiang H, Krishnamoorthy M, Owens B, Sier D (2004) An annotated bibliography of personnel scheduling and rostering. Ann Oper Res 127:21–144CrossRefGoogle Scholar
  25. Gass SI, Harris CM (2001) Encyclopaedia of operations research and management science. Kluwer, DordrechtGoogle Scholar
  26. Gendreau M, Potvin J-Y (eds) (2010) Handbook of metaheuristics, 2nd edn. Springer, BerlinGoogle Scholar
  27. Glover F, Kochenberger G (eds) (2003) Handbook of metaheuristics. Kluwer, DordrechtGoogle Scholar
  28. Glover F, Laguna M (1997) Tabu search. Kluwer, DordrechtCrossRefGoogle Scholar
  29. Gopalakrishnan B, Johnson EL (2005) Airline crew scheduling: state-of-the-art. Ann Oper Res 140:305–337CrossRefGoogle Scholar
  30. Hillier FS, Liberman GJ (2010) Introduction to operations research, 9th edn. McGraw-Hill, New YorkGoogle Scholar
  31. Johnson DS, McGeoch LA (1997) The travelling salesman problem: a case study. In: Aarts E, Lenstra JK (eds) (2003) Local search in combinatorial optimization. Princeton University Press, Princeton, New Jersey, USA, pp 215–310Google Scholar
  32. Jourdan L, Basseur M, Talbi E-G (2009) Hybridizing exact methods and metaheuristics: a taxonomy. Eur J Oper Res 199:620–629CrossRefGoogle Scholar
  33. Kendall G, Knust S, Ribeiro CC, Urrutia S (2010) Scheduling in sports: an annotated bibliography. Comput Oper Res 37:1–19CrossRefGoogle Scholar
  34. Kirby MW (2003) Operational research in war and peace: the British experience from the 1930s to 1970. Imperial College Press, LondonCrossRefGoogle Scholar
  35. Kwan R (2004) Bus and train driver scheduling. In: Leung JY-T (ed) Handbook of scheduling, chap 51. Chapman and Hall/CRC, Boca RatonGoogle Scholar
  36. Laporte G (2009) Fifty years of vehicle routing. Transp Sci 43:408–416CrossRefGoogle Scholar
  37. Laporte G (2010) A concise guide to the traveling salesman problem. J Oper Res Soc 61:35–40CrossRefGoogle Scholar
  38. Lawler EL, Lenstra JK, Rinnooy Kan AHG, Shmoys DB (eds) (1985) The travelling salesman problem: a guided tour of combinatorial optimization. Wiley, New York (reprinted with subject index 1990)Google Scholar
  39. Leung JY-T (ed) (2004) Handbook of scheduling. Chapman and Hall/CRC, Boca RatonGoogle Scholar
  40. Lewis R (2008) A survey of metaheuristic-based techniques for university timetabling problems. OR Spectr 30:167–190Google Scholar
  41. Luger GFA (2005) Artificial intelligence: structures and strategies for complex problem solving, 5th edn. Addison-Wesley, New YorkGoogle Scholar
  42. Maniezzo V, Stützle T, Voss S (eds) (2010) Matheuristics. Springer, BerlinGoogle Scholar
  43. Marinakis Y, Migdalas A (2007) Annotated bibliography in vehicle routing. Oper Res 7:27–46Google Scholar
  44. McCarthy J (1996) Defending AI research: a collection of essays and reviews. CSLI Publications, StanfordGoogle Scholar
  45. Michaelwicz Z, Fogel DB (2004) How to solve it: modern heuristics, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  46. Negnevitsky M (2005) Artificial intelligence: a Guide to intelligent systems, 2nd edn. Addison-Wesley, New YorkGoogle Scholar
  47. Nilsson, N (1998) Artificial intelligence: a new synthesis. Morgan Kaufmann, San MateoGoogle Scholar
  48. Osman IH, Kelly JP (eds) (1996) Metaheuristics: theory and applications. Kluwer, DordrechtGoogle Scholar
  49. Oxford Dictionary of Computing (1996) Oxford dictionary of computing, 4th edn. Oxford University Press, OxfordGoogle Scholar
  50. Pardalos PM, Resende MGC (eds) (2002) Handbook of applied optimization. Oxford University Press, OxfordGoogle Scholar
  51. Petrovic S, Burke EK (2004) University timetabling. In: Leung JY-T (ed) (2004) Handbook of scheduling, chap 45. Chapman and Hall/CRC, Boca RatonGoogle Scholar
  52. Potvin J-Y (2009) Evolutionary algorithms for vehicle routing. INFORMS J Comput 21:518–548CrossRefGoogle Scholar
  53. Qi X, Yang J, Yu G (2004) Scheduling problems in the airline industry. In: Leung JY-T (ed) Handbook of scheduling, chap 51. Chapman and Hall/CRC, Boca RatonGoogle Scholar
  54. Qu R, Burke EK, McCollum B, Merlot LGT, Lee SY (2009) A survey of search methodologies and automated system development for examination timetabling. J Sched 12:55–89CrossRefGoogle Scholar
  55. Rais A, Viana A (2011) Operations research in healthcare: a survey. Int Trans Oper Res 18:1–31CrossRefGoogle Scholar
  56. Rasmussen RV, Trick MA (2008) Round robin scheduling—a survey. Eur J Oper Res 188:617–636CrossRefGoogle Scholar
  57. Rayward-Smith VJ, Osman IH, Reeves CR, Smith GD (1996) Modern heuristic search methods. Wiley, New YorkGoogle Scholar
  58. Reeves CR (1996) Modern heuristic techniques. In: Rayward-Smith VJ, Osman IH, Reeves CR, Smith GD (eds) Modern heuristic search methods. Wiley, New York, pp 1–25Google Scholar
  59. Resende MGC, de Sousa JP (eds) (2004) Metaheuristics: computer decision making. Kluwer, DordrechtGoogle Scholar
  60. Ribeiro CC, Hansen P (eds) (2002) Essays and surveys in metaheuristics. Kluwer, DordrechtGoogle Scholar
  61. Rich E, Knight K (1991) Artificial intelligence, 2nd edn. McGraw-Hill, New YorkGoogle Scholar
  62. Russell S, Norvig P (2009) Artificial intelligence: a modern approach, 3rd edn. Prentice-Hall, Englewood CliffsGoogle Scholar
  63. Schaerf A (1999) A survey of automated timetabling. Artif Intell Rev 13:87–127CrossRefGoogle Scholar
  64. Taha HA (2010) Operations research: an introduction, 9th edn. Prentice-Hall, Englewood CliffsGoogle Scholar
  65. Urry S (1991) An introduction to operational research: the best of everything. Longmans, LondonGoogle Scholar
  66. Voss S, Martello S, Osman IH, Roucairol C (eds) (1999) Meta-heuristics: advances and trends in local search paradigms for optimization. Kluwer, DordrechtGoogle Scholar
  67. Wäscher G, Hauβner H, Schumann H (2007) An improved typology of cutting and packing problems. Eur J Oper Res 183:1109–1130Google Scholar
  68. Winston WL (2004) Operations research: applications and algorithms, 4th edn. Duxbury, Pacific GroveGoogle Scholar
  69. Wright MB (2009) Fifty years of OR in sport. J Oper Res Soc 60:S161–S168CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Computational Heuristics, Operational Research and Decision Support Group, Division of Computing and MathematicsUniversity of StirlingScotlandUK
  2. 2.Automated Scheduling, Optimization and Planning Research Group, School of Computer ScienceUniversity of NottinghamNottinghamshireUK
  3. 3.Automated Scheduling, Optimization and Planning Research Group, School of Computer ScienceUniversity of NottinghamSemenyihMalaysia

Personalised recommendations