More or Less? Two Approaches to Evolving Game-Playing Strategies

  • Amit BenbassatEmail author
  • Achiya Elyasaf
  • Moshe Sipper
Part of the Genetic and Evolutionary Computation book series (GEVO)


We present two opposing approaches to the evolution of game strategies, one wherein a minimal amount of domain expertise is injected into the process, the other infusing the evolutionary setup with expertise in the form of domain heuristics. We show that the first approach works well for several popular board games, while the second produces top-notch solvers for the hard game of FreeCell.

Key words

αβ search Checkers Dodgem Freecell Genetic algorithms Genetic programming Hyper heuristic Reversi 



This research was supported by the Israel Science Foundation (grant no. 123/11). Achiya Elyasaf is partially supported by the Lynn and William Frankel Center for Computer Sciences.


  1. Aler R, Borrajo D, Isasi P (2002) Using genetic programming to learn and improve knowledge. Artificial Intelligence 141(1–2):29–56zbMATHCrossRefGoogle Scholar
  2. Azaria Y, Sipper M (2005) GP-gammon: Genetically programming backgammon players. Genetic Programming and Evolvable Machines 6(3):283–300, DOI doi:10.1007/s10710-005-2990-0, URL, published online: 12 August 2005
  3. Benbassat A, Sipper M (2010) Evolving lose-checkers players using genetic programming. In: IEEE Conference on Computational Intelligence and Game, IT University of Copenhagen, Denmark, pp 30–37, DOI doi:10.1109/ITW.2010.5593376, URL
  4. Benbassat A, Sipper M (2012) Evolving competent board game players for mutiple games with little domain knowledge (in preparation)Google Scholar
  5. Berlekamp ER, Conway JH, Guy RK (1982) Winning Ways for your Mathematical Plays. Academic Press, New York, NY, USAzbMATHGoogle Scholar
  6. Burke EK, Hyde M, Kendall G, Ochoa G, Ozcan E, Woodward JR (2010) A classification of hyper-heuristic approaches. In: Gendreau M, Potvin J (eds) Handbook of Meta-Heuristics 2nd Edition, Springer, pp 449–468Google Scholar
  7. Elyasaf A, Hauptman A, Sipper M (2011) GA-FreeCell: Evolving Solvers for the Game of FreeCell. In: Krasnogor N, et al (eds) GECCO ’11: Proceedings of the 13th annual conference on Genetic and evolutionary computation, ACM, Dublin, Ireland, pp 1931–1938, DOI doi:10.1145/ 2001576.2001836Google Scholar
  8. Elyasaf A, Hauptman A, Sipper M (2012) Evolutionary design of freecell solvers (submitted)Google Scholar
  9. Hauptman A, Sipper M (2005) GP-endchess: Using genetic programming to evolve chess endgame players. In: Keijzer M, Tettamanzi A, Collet P, van Hemert JI, Tomassini M (eds) Proceedings of the 8th European Conference on Genetic Programming, Springer, Lausanne, Switzerland, Lecture Notes in Computer Science, vol 3447, pp 120–131, DOI doi:10.1007/b107383, URL
  10. Hauptman A, Sipper M (2007) Evolution of an efficient search algorithm for the mate-in-N problem in chess. In: Ebner M, O’Neill M, Ekárt A, Vanneschi L, Esparcia-Alcázar AI (eds) Proceedings of the 10th European Conference on Genetic Programming, Springer, Valencia, Spain, Lecture Notes in Computer Science, vol 4445, pp 78–89, DOI doi:10. 1007/978-3-540-71605-1-8Google Scholar
  11. Hauptman A, Elyasaf A, Sipper M, Karmon A (2009) GP-rush: using genetic programming to evolve solvers for the rush hour puzzle. In: Raidl G, Rothlauf F, Squillero G, Drechsler R, Stuetzle T, Birattari M, Congdon CB, Middendorf M, Blum C, Cotta C, Bosman P, Grahl J, Knowles J, Corne D, Beyer HG, Stanley K, Miller JF, van Hemert J, Lenaerts T, Ebner M, Bacardit J, O’Neill M, Di Penta M, Doerr B, Jansen T, Poli R, Alba E (eds) GECCO ’09: Proceedings of the 11th Annual conference on Genetic and evolutionary computation, ACM, Montreal, pp 955–962, DOI doi:10.1145/1569901.1570032Google Scholar
  12. Hauptman A, Elyasaf A, Sipper M (2010) Evolving hyper heuristic-based solvers for Rush Hour and FreeCell. In: SoCS ’10: Proceedings of the 3rd Annual Symposium on Combinatorial Search (SoCS 2010), pp 149–150Google Scholar
  13. Heineman GT (2009) Algorithm to solve FreeCell solitaire games. Broadcast. oreilly. com/2009/01/january-column-graph-algorithm.html. Blog column associated with the book “Algorithms in a Nutshell book,” by G. T. Heineman, G. Pollice, and S. Selkow, O’Reilly Media, 2008Google Scholar
  14. Helmert M (2003) Complexity results for standard benchmark domains in planning. Artificial Intelligence 143(2):219–262MathSciNetzbMATHCrossRefGoogle Scholar
  15. Hillis WD (1992) Co-evolving parasites improve simulated evolution as an optimization procedure. In: Langton CG, Taylor CE, Farmer JD, Rasmussen S (eds) Artificial Life II, Santa Fe Institute Studies in the Sciences of Complexity, vol X, Addison-Wesley, Santa Fe Institute, New Mexico, USA, pp 313–324Google Scholar
  16. Hlynka M, Schaeffer J (2006) Automatic generation of search engines. In: Advances in Computer Games, pp 23–38Google Scholar
  17. des Jardins D (1996) Dodgem: Internet discussion. URL
  18. Lee KF, Mahajan S (1990) The development of a world class othello program. Artificial Intelligence 43(1):21–36, DOI DOI:10.1016/ 0004-3702(90)90068-BGoogle Scholar
  19. Moriarty DE, Miikkulainen R (1995) Discovering complex (othello) strategies through evolutionary neural networks. Connection Science 7(3):195–210CrossRefGoogle Scholar
  20. Rosenbloom PS (1982) A world-championship-level othello program. Artificial Intelligence 19(3):279–320, DOI DOI:10.1016/0004-3702(82) 90003-0Google Scholar
  21. Samadi M, Felner A, Schaeffer J (2008) Learning from multiple heuristics. In: Fox D, Gomes CP (eds) Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (AAAI 2008), AAAI Press, pp 357–362Google Scholar
  22. Schaeffer J, et al (2007) Checkers is solved. Science 317(5844):1518–1522MathSciNetzbMATHCrossRefGoogle Scholar
  23. Sipper M (2011) Evolved to Win. Lulu, URL, available at

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Computer ScienceBen-Gurion UniversityBeer-ShevaIsrael

Personalised recommendations