Symbolic Regression Model Comparison Approach Using Transmitted Variation

  • Flor A. CastilloEmail author
  • Carlos M. Villa
  • Arthur K. Kordon
Part of the Genetic and Evolutionary Computation book series (GEVO)


Model evaluation in symbolic regression generated by GP is of critical importance for successful industrial applications. Typically this model evaluation is achieved by a tradeoff between model complexity and R 2. The chapter introduces a model comparison approach based on the transmission of variation from the inputs to the output. The approach is illustrated with three different data sets from real industrial applications.

Key words

Symbolic regression Model comparison Transmitted variation Pareto front Interpolation Monte Carlo 


  1. Bates DM, Watts DG (1988) Nonlinear Regression Analysis and its Applications. John Wiley & SonsGoogle Scholar
  2. Box GEP, Jenkins GM (1976) Time Series Analysis: Forecasting and Control, 2nd ed. Prentice HallGoogle Scholar
  3. Castillo F, Kordon A, Smits G (2006) Robust pareto front genetic programming parameter selection based on design of experiments and industrial data. In: Riolo RL, Soule T, Worzel B (eds) Genetic Programming Theory and Practice IV, Genetic and Evolutionary Computation, vol 5, Springer, Ann Arbor, chap 2, pp 149–166Google Scholar
  4. Castillo F, Kordon A, Villa C (2010) Genetic programming transforms in linear regression situations. In: Riolo R, McConaghy T, Vladislavleva E (eds) Genetic Programming Theory and Practice VIII, Genetic and Evolutionary Computation, vol 8, Springer, Ann Arbor, USA, chap 11, pp 175–194Google Scholar
  5. Kordon A (2009) Applied Computational Intelligence. SpringerGoogle Scholar
  6. Montgomery D, Peck E (1992) Introduction to Linear Regression Analysis. John Wiley & SonsGoogle Scholar
  7. Morrison S (1999) Variance synthesis revisited. Quality Engineering 11:149–155CrossRefGoogle Scholar
  8. Neter J, Kutner M, Nachtscheim C, Wasserman W (1996) Applied Linear Statistical Models, 4th ed. McGraw-HillGoogle Scholar
  9. Papadopoulos C (2001) Uncertainty Estimation and Monte Carlo Simulation Method. Flow Measurement and Instrumentation 12:291–298CrossRefGoogle Scholar
  10. Schwartz LM (1975) Random error propagation by monte carlo simulation. Analytical Chemistry 47:964–964CrossRefGoogle Scholar
  11. Seavey K, Jones A, Kordon A, Smits G (2010) Hybrid Genetic Programming - First-Principles Approach To Process and Product Modeling. Industrial and Engineering Chemistry Ressearch 47:963–964Google Scholar
  12. Smits G, Kotanchek M (2004) Pareto-front exploitation in symbolic regression. In: O’Reilly UM, Yu T, Riolo RL, Worzel B (eds) Genetic Programming Theory and Practice II, Springer, Ann Arbor, chap 17, pp 283–299Google Scholar
  13. Wackerly D, Mendenhall W, Scheaffer R (2007) Mathematical Statistics with Applications, 7th ed. Duxbury PressGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Flor A. Castillo
    • 1
    Email author
  • Carlos M. Villa
    • 1
  • Arthur K. Kordon
    • 1
  1. 1.The Dow Chemical CompanyFreeportUSA

Personalised recommendations