Event-Related Potential Studies of Cognitive Processing Abnormalities in Autism

  • Estate M. Sokhadze
  • Joshua Baruth
  • Allan Tasman
  • Manuel F. Casanova


Autism is recognized as a pervasive developmental disorder (PDD) usually evident during the first 3 years of life (Ruble and Brown 2003; Volkmar and Pauls 2003). Several neuropsychological models have been proposed to explain the cognitive deficits found in autism spectrum disorders (ASD) (Baron-Cohen 2004), one of which is based on salient deficits in executive function (Burack 1994; Hughes et al. 1994; Ozonoff 1997; Hill 2004). Executive functioning skills fall under the purview of those prefrontal functions that facilitate problem-solving, flexible set-shifting, and forward planning in the implementation of goal-directed behavior (Hughes et al. 1994). The executive deficits in this autism model have been related to specific frontal mechanisms, principally to the prefrontal and midfrontal cortices and associated neural circuitries (Bishop 1993; Hill 2004). The domain of executive functions has significant implications for developmental psychopathologies, but there are still doubts (Griffith et al. 1999) regarding the causal explanation of signs and symptoms in autism as stemming exclusively from frontal executive functioning abnormalities.


Autism Spectrum Disorder Autism Spectrum Disorder Attention Deficit Hyperactivity Disorder Anterior Cingulate Cortex Pervasive Developmental Disorder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aman MG, Singh NN (1994) Aberrant behavior checklist community supplemental manual. Slossom Education, East Aurora, NYGoogle Scholar
  2. American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders. American Psychiatric, Washington, DCGoogle Scholar
  3. Barnea-Goraly N, Kwon H, Menon V, Eliez S, Lotspeich L, Reiss AL (2004) White matter structure in autism: preliminary evidence from diffusion tensor imaging. Biol Psychiatry 55:323–326PubMedCrossRefGoogle Scholar
  4. Baron-Cohen S (2004) The cognitive neuroscience of autism. J Neurol Neurosurg Psychiatry 75:945–948PubMedCrossRefGoogle Scholar
  5. Baruth JM, Casanova MF, Sears L, Sokhadze EM (2010a) Early-stage visual processing abnormalities in high-functioning autism spectrum disorder (ASD). Transl Neurosci 1:177–187PubMedCrossRefGoogle Scholar
  6. Baruth JM, Casanova MF, El-Baz A, Horrell T, Mathai G, Sears L, Sokhadze EM (2010b) Low-­frequency repetitive transcranial magnetic stimulation modulates evoked-gamma frequency oscillations in autism spectrum disorder. J Neurother 14:179–194PubMedCrossRefGoogle Scholar
  7. Baruth JM, Williams EL, Sokhadze EM, El-Baz A, Casanova MF (2011) Beneficial effects of repetitive transcranial magnetic stimulation (rTMS) on behavioral outcome measures in autism spectrum disorder. Autism Sci Dig 1:52–57Google Scholar
  8. Bates AT, Liddle PF, Kiehl KA, Ngan ETC (2004) State dependent changes in error monitoring in schizophrenia. J Psychiatr Res 38:347–356PubMedCrossRefGoogle Scholar
  9. Bauman ML, Kemper TL (2005) Structural brain anatomy in autism: what is the evidence? In: Bauman ML, Kemper TL (eds) The neurobiology of autism. Johns Hopkins University Press, Baltimore, MD, pp 121–135Google Scholar
  10. Bekker EM, Kenemans JL, Verbaten MN (2004) Electrophysiological correlates of attention, inhibition, sensitivity and bias in a continuous performance task. Clin Neurophysiol 115:2001–2013PubMedCrossRefGoogle Scholar
  11. Belmonte MK (2000) Abnormal attention in autism shown by steady-state visual evoked potentials. Autism 4:269–285CrossRefGoogle Scholar
  12. Belmonte MK, Yurgelun-Todd DA (2003a) Functional anatomy of impaired selective attention and compensatory processing in autism. Cogn Brain Res 17:651–664CrossRefGoogle Scholar
  13. Belmonte MK, Yurgelun-Todd D (2003b) Anatomic dissociation of selective and suppressive processes in visual attention. Neuroimage 19:180–189PubMedCrossRefGoogle Scholar
  14. Belmonte MK, Allen G, Beckel-Mitchener A, Boulanger LM, Carper RA, Webb SJ (2004a) Autism and abnormal development of brain connectivity. J Neurosci 24:9228–9231PubMedCrossRefGoogle Scholar
  15. Belmonte MK, Cook EH, Anderson GM, Rubenstein JLR, Greenough WT, Beckel-Mitchener A, Courchesne E, Boulanger LM, Powell SB, Levitt PR, Perry EK, Y-h J, DeLorey TM, Tierney E (2004b) Autism as a disorder of neural information processing: directions for research and targets for therapy. Mol Psychiatry 9:646–663PubMedGoogle Scholar
  16. Bertone A, Mottron L, Jelenic P, Faubert J (2005) Enhanced and diminished visuo-spatial information processing in autism depends on stimulus complexity. Brain 128:2430–2441PubMedCrossRefGoogle Scholar
  17. Bishop DVM (1993) Annotation: autism, executive functions and theory of mind: a neuropsychological perspective. J Child Psychol Psychiatry 34:279–293PubMedCrossRefGoogle Scholar
  18. Bodfish JW, Symons FJ, Parker DE, Lewis MH (2000) Varieties of repetitive behavior in autism: comparisons to mental retardation. J Autism Dev Disord 30:237–243PubMedCrossRefGoogle Scholar
  19. Bogte H, Flamma B, van der Meere J, Van Engeland H (2007) Post-error adaptation in adults with high functioning autism. Neuropsychologia 45:1707–1714PubMedCrossRefGoogle Scholar
  20. Bomba MD, Pang EW (2004) Cortical auditory evoked potentials in autism: a review. Int J Psychophysiol 53:161–169PubMedCrossRefGoogle Scholar
  21. Brock J, Brown CC, Boucher J, Rippon G (2002) The temporal binding deficit hypothesis of autism. Dev Psychopathol 14:209–224PubMedCrossRefGoogle Scholar
  22. Brown CC (2005) EEG in autism: is there just too much going on in there? In: Casanova MF (ed) Recent developments in autism research. Nova Biomedical, New York, NY, pp 109–126Google Scholar
  23. Brown CC, Gruber T, Boucher J, Rippon G, Brock J (2005) Gamma abnormalities during perception of illusory figures in autism. Cortex 41:364–376PubMedCrossRefGoogle Scholar
  24. Bruneau N, Roux S, Adrien JL, Barthélémy C (1999) Auditory associative cortex dysfunction in children with autism: evidence from late auditory evoked potentials (N1 wave–T complex). Clin Neurophysiol 110:1927–1934PubMedCrossRefGoogle Scholar
  25. Burack JA (1994) Selective attention deficits in persons with autism: preliminary evidence of an inefficient attentional lens. J Abnorm Psychol 103:535–543PubMedCrossRefGoogle Scholar
  26. Burle B, Possamaï C-A, Vidal F, Bonnet M, Hasbroucq T (2002) Executive control in the Simon effect: an electromyographic and distributional analysis. Psychol Res 66:324–336PubMedCrossRefGoogle Scholar
  27. Bush G, Luu P, Posner MI (2000) Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci 4:215–222PubMedCrossRefGoogle Scholar
  28. Buxhoeveden DP, Casanova MF (2002) The minicolumn and evolution of the brain. Brain Behav Evol 60:125–151PubMedCrossRefGoogle Scholar
  29. Casanova MF (2005) Minicolumnar pathology in autism. In: Casanova MF (ed) Recent developments in autism research. Nova Biomedical, New York, NY, pp 133–143Google Scholar
  30. Casanova MF (2006) Neuropathological and genetic findings in autism: the significance of a ­putative minicolumnopathy. Neuroscientist 12:435–441PubMedCrossRefGoogle Scholar
  31. Casanova MF, Buxhoeveden DP, Brown C (2002a) Clinical and macroscopic correlates of ­minicolumnar pathology in autism. J Child Neurol 17:692–695PubMedCrossRefGoogle Scholar
  32. Casanova MF, Buxhoeveden DP, Switala AE, Roy E (2002b) Minicolumnar pathology in autism. Neurology 58:428–432PubMedCrossRefGoogle Scholar
  33. Casanova MF, Buxhoeveden DP, Switala AE, Roy E (2002c) Neuronal density and architecture (Gray Level Index) in the brains of autistic patients. J Child Neurol 17:515–521PubMedCrossRefGoogle Scholar
  34. Casanova MF, Buxhoeveden DP, Gomez J (2003) Disruption in the inhibitory architecture of the cell minicolumn: implications for autism. Neuroscientist 9:496–507PubMedCrossRefGoogle Scholar
  35. Casanova MF, Van Kooten IAJ, Switala AE, Van Engeland H, Heinsen H, Steinbusch HWM, Hof PR, Schmitz C (2006a) Abnormalities of cortical minicolumnar organization in the prefrontal lobes of autistic patients. Clin Neurosci Res 6:127–133CrossRefGoogle Scholar
  36. Casanova MF, Van Kooten IAJ, Switala AE, Van Engeland H, Heinsen H, Steinbusch HWM, Hof PR, Trippe J, Stone J, Schmitz C (2006b) Minicolumnar abnormalities in autism. Acta Neuropathol 112:287–303PubMedCrossRefGoogle Scholar
  37. Casanova MF, Baruth JM, El-Baz A, Tasman A, Sears L, Sokhadze EM (2012) Repetitive transcanial magnetic stimulation (RTMS) modulates event-related potential (ERP) indices of attention in autism. Transl Neurosci 3:170–180CrossRefGoogle Scholar
  38. Ciesielski KT, Courchesne E, Elmasian R (1990) Effects of focused attention tasks on event-­related potentials in autistic and normal individuals. Electroencephalogr Clin Neurophysiol 75:207–220PubMedCrossRefGoogle Scholar
  39. Ciesielski KT, Knight JE, Prince RJ, Harris RJ, Handmaker SD (1995) Event-related potentials in cross-modal divided attention in autism. Neuropsychologia 33:225–246PubMedCrossRefGoogle Scholar
  40. Clark VP, Fan S, Hillyard SA (1994) Identification of early visual evoked potential generators by retinotopic and topographic analyses. Hum Brain Mapp 2:170–187CrossRefGoogle Scholar
  41. Coben R, Padolsky I (2007) Assessment-guided neurofeedback for autistic spectrum disorder. J Neurother 11:5–23CrossRefGoogle Scholar
  42. Coles MGH, Rugg MD (1995) Event-related brain potentials: an introduction. In: Rugg MD, Coles MGH (eds) Electrophysiology of mind: event-related brain potentials and cognition. Oxford University Press, Oxford, pp 40–85Google Scholar
  43. Coles MGH, Scheffers MK, Holroyd CB (2001) Why is there an ERN/Ne on correct trials? Response representations, stimulus-related components, and the theory of error-processing. Biol Psychol 56:173–189PubMedCrossRefGoogle Scholar
  44. Constantino JN, Gruber CP (2005) Social responsiveness scale (SRS) manual. Western Psychological Services, Los Angeles, CAGoogle Scholar
  45. Courchesne E, Pierce K (2005) Brain overgrowth in autism during a critical time in development: implications for frontal pyramidal neuron and interneuron development and connectivity. Int J Dev Neurosci 23:153–170PubMedCrossRefGoogle Scholar
  46. Courchesne E, Lincoln AJ, Yeung-Courchesne R, Elmasian R, Grillon C (1989) Pathophysiologic findings in nonretarded autism and receptive developmental language disorder. J Autism Dev Disord 19:1–17PubMedCrossRefGoogle Scholar
  47. Courchesne E, Karns CM, Davis HR, Ziccardi R, Carper RA, Tigue ZD, Chisum HJ, Moses P, Pierce K, Lord C, Lincoln AJ, Pizzo S, Schreibman LE, Haas RH, Akshoomoff NA, Courchesne RY (2001) Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology 57:245–254PubMedCrossRefGoogle Scholar
  48. Dawson G, Meltzoff AN, Osterling J, Rinaldi J, Brown E (1998) Children with autism fail to orient to naturally occurring social stimuli. J Autism Dev Disord 28:479–485PubMedCrossRefGoogle Scholar
  49. de Bruijn ERA, Grootens KP, Verkes RJ, Buchholz V, Hummelen JW, Hulstijn W (2006) Neural correlates of impulsive responding in borderline personality disorder: ERP evidence for reduced action monitoring. J Psychiatr Res 40:428–437PubMedCrossRefGoogle Scholar
  50. DeFelipe J (1999) Chandelier cells and epilepsy. Brain 122:1807–1822PubMedCrossRefGoogle Scholar
  51. DeFelipe J (2004) Cortical microanatomy and human brain disorders: epilepsy. Cortex 40:232–233PubMedCrossRefGoogle Scholar
  52. Devinsky O, Luciano D (1993) The contributions of cingulate cortex to human behavior. In: Vogt BA, Gabriel M (eds) Neurobiology of cingulate cortex and limbic thalamus: a comprehensive handbook. Birkhäuser Verlag, Cambridge, MA, pp 527–556Google Scholar
  53. Donchin E, Coles MGH (1988) Is the P300 component a manifestation of context updating? Behav Brain Sci 11:357–374CrossRefGoogle Scholar
  54. Donkers FCL, van Boxtel GJM (2004) The N2 in go/no-go tasks reflects conflict monitoring not response inhibition. Brain Cogn 56:165–176PubMedCrossRefGoogle Scholar
  55. Duncan CC, Barry RJ, Connolly JF, Fischer C, Michie PT, Näätänen R, Polich J, Reinvang I, Van Petten C (2009) Event-related potentials in clinical research: guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. Clin Neurophysiol 120:1883–1908PubMedCrossRefGoogle Scholar
  56. Engel AK, König P, Kreiter AK, Singer W (1991) Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex. Science 252:1177–1179PubMedCrossRefGoogle Scholar
  57. Falkenstein M, Hoormann J, Hohnsbein J (1999) ERP components in Go/Nogo tasks and their relation to inhibition. Acta Psychol 101:267–291CrossRefGoogle Scholar
  58. Falkenstein M, Hoormann J, Christ S, Hohnsbein J (2000) ERP components on reaction errors and their functional significance: a tutorial. Biol Psychiatry 51:87–107CrossRefGoogle Scholar
  59. Falkenstein M, Hoormann J, Hohnsbein J (2002) Inhibition-related ERP components: variation with modality, age, and time-on-task. J Psychophysiol 16:167–175CrossRefGoogle Scholar
  60. Favorov OV, Kelly DG (1994a) Minicolumnar organization within somatosensory cortical segregates, II: emergent functional properties. Cereb Cortex 4:428–442PubMedCrossRefGoogle Scholar
  61. Favorov OV, Kelly DG (1994b) Minicolumnar organization within somatosensory cortical segregates, I: development of afferent connections. Cereb Cortex 4:408–427PubMedCrossRefGoogle Scholar
  62. Ferri R, Elia M, Agarwal N, Lanuzza B, Musumeci SA, Pennisi G (2003) The mismatch negativity and the P3a components of the auditory event-related potentials in autistic low-functioning subjects. Clin Neurophysiol 114:1671–1680PubMedCrossRefGoogle Scholar
  63. Franken IHA, van Strien JW, Franzek EJ, van de Wetering BJ (2007) Error-processing deficits in patients with cocaine dependence. Biol Psychiatry 75:45–51CrossRefGoogle Scholar
  64. Friedman D, Simpson G, Hamberger M (1993) Age-related changes in scalp topography to novel and target stimuli. Psychophysiology 30:383–396PubMedCrossRefGoogle Scholar
  65. Frith U, Happé F (1994) Autism: beyond “theory of mind”. Cognition 50:115–132PubMedCrossRefGoogle Scholar
  66. Gehring WJ, Knight RT (2000) Prefrontal-cingulate interactions in action monitoring. Nat Neurosci 3:516–520PubMedCrossRefGoogle Scholar
  67. Gehring WJ, Goss B, Coles MGH, Meyer DE, Donchin E (1993) A neural system for error detection and compensation. Psychol Sci 4:385–390CrossRefGoogle Scholar
  68. Gehring WJ, Himle J, Nisenson LG (2000) Action-monitoring dysfunction in obsessive-­compulsive disorder. Psychol Sci 11:1–6PubMedCrossRefGoogle Scholar
  69. Gomez Gonzales CM, Clark VP, Fan S, Luck SJ, Hillyard SA (1994) Sources of attention-sensitive visual event-related potentials. Brain Topogr 7:41–51CrossRefGoogle Scholar
  70. Goto Y, Brigell MG, Parmeggiani L (1996) Dipole-modeling of the visual evoked P300. J Psychosom Res 41:71–79PubMedCrossRefGoogle Scholar
  71. Griffith EM, Pennington BF, Wehner EA, Rogers SJ (1999) Executive functions in young children with autism. Child Dev 70:817–832PubMedCrossRefGoogle Scholar
  72. Guy W (1976) CGI: clinical global impressions. In: Guy W (ed) ECDEU assessment manual for psychopharmacology. U.S. Department of Health, Education, and Welfare, Rockville, MD, pp 217–222Google Scholar
  73. Halgren E, Marinkovic K, Chauvel P (1998) Generators of the late cognitive potentials in auditory and visual oddball tasks. Electroencephalogr Clin Neurophysiol 106:156–164PubMedCrossRefGoogle Scholar
  74. Hall GBC, Szechtman H, Nahmias C (2003) Enhanced salience and emotion recognition in autism: a PET study. Am J Psychiatry 160:1439–1441PubMedCrossRefGoogle Scholar
  75. Happé F (1999) Autism: cognitive deficit or cognitive style? Trends Cogn Sci 3:216–222PubMedCrossRefGoogle Scholar
  76. Haznedar MM, Buchsbaum MS, Wei T-C, Hof PR, Cartwright C, Bienstock CA, Hollander E (2000) Limbic circuitry in patients with autism spectrum disorders studied with positron emission tomography and magnetic resonance imaging. Am J Psychiatry 157:1994–2001PubMedCrossRefGoogle Scholar
  77. Heinze HJ, Mangun GR, Burchert W, Hinrichs H, Scholz M, Münte TF, Gös A, Scherg M, Johannes S, Hundeshagen H, Gazzaniga MS, Hillyard SA (1994) Combined spatial and temporal ­imaging of brain activity during visual selective attention in humans. Nature 372:543–546PubMedCrossRefGoogle Scholar
  78. Henderson H, Schwartz C, Mundy P, Burnette CP, Sutton S, Zahka N, Pradella A (2006) Response monitoring, the error-related negativity, and differences in social behavior in autism. Brain Cogn 61:96–109PubMedCrossRefGoogle Scholar
  79. Herbert MR, Ziegler DA, Deutsch CK, O’Brien LM, Kennedy DN, Filipek PA, Bakardjiev AI, Hodgson J, Takeoka M, Caviness VS Jr (2005) Brain asymmetries in autism and developmental language disorder: a nested whole-brain analysis. Brain 128:213–226PubMedCrossRefGoogle Scholar
  80. Herrmann CS, Knight RT (2001) Mechanisms of human attention: event-related potentials and oscillations. Neurosci Biobehav Rev 25:465–476PubMedCrossRefGoogle Scholar
  81. Herrmann MJ, Römmler J, Ehlis A-C, Heidrich A, Fallgatter AJ (2004) Source localization (LORETA) of the error-related-negativity (ERN/Ne) and positivity (Pe). Cogn Brain Res 20:294–299CrossRefGoogle Scholar
  82. Hill EL (2004) Evaluating the theory of executive dysfunction in autism. Dev Rev 24:189–233CrossRefGoogle Scholar
  83. Hillyard SA, Anllo-Vento L (1998) Event-related brain potentials in the study of visual selective attention. Proc Natl Acad Sci USA 95:781–787PubMedCrossRefGoogle Scholar
  84. Holroyd CB, Coles MGH (2002) The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychol Rev 109:679–709PubMedCrossRefGoogle Scholar
  85. Hughes C, Russell J, Robbins TW (1994) Evidence for executive dysfunction in autism. Neuropsychologia 32:477–492PubMedCrossRefGoogle Scholar
  86. Jarusiewicz B (2002) Efficacy of neurofeedback for children in the autistic spectrum: a pilot study. J Neurother 6:39–49CrossRefGoogle Scholar
  87. Johannes S, Wieringa BM, Nager W, Rada D, Dengler R, Emrich HM, Münte TF, Dietrich DE (2001) Discrepant target detection and action monitoring in obsessive–compulsive disorder. Psychiatry Res Neuroimag 108:101–110CrossRefGoogle Scholar
  88. Johnson MH (1999) Cortical plasticity in normal and abnormal cognitive development: evidence and working hypotheses. Dev Psychopathol 11:419–437PubMedCrossRefGoogle Scholar
  89. Just MA, Cherkassky VL, Keller TA, Minshew NJ (2004) Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain 127:1811–1821PubMedCrossRefGoogle Scholar
  90. Katayama J, Polich J (1998) Stimulus context determines P3a and P3b. Psychophysiology 35:23–33PubMedCrossRefGoogle Scholar
  91. Kemner C, Verbaten MN, Cuperus JM, Camfferman G, van Engeland H (1994) Visual and somatosensory event-related brain potentials in autistic children and three different control groups. Electroencephalogr Clin Neurophysiol 92:225–237PubMedCrossRefGoogle Scholar
  92. Kemner C, Verbaten MN, Cuperus JM, Camfferman G, van Engeland H (1995) Auditory event-­related brain potentials in autistic children and three different control groups. Biol Psychiatry 38:150–165PubMedCrossRefGoogle Scholar
  93. Kemner C, van der Gaag RJ, Verbaten MN, Van Engeland H (1999) ERP differences among subtypes of pervasive developmental disorders. Biol Psychiatry 46:781–789PubMedCrossRefGoogle Scholar
  94. Kenemans JL, Kok A, Smulders FTY (1993) Event-related potentials to conjunctions of spatial frequency and orientation as a function of stimulus parameters and response requirements. Electroencephalogr Clin Neurophysiol 88:51–63PubMedCrossRefGoogle Scholar
  95. Klin A, Jones W, Schultz RT, Volkmar FR (2003) The enactive mind, or from actions to cognition: lessons from autism. Philos Trans R Soc Lond B Biol Sci 358:345–360PubMedCrossRefGoogle Scholar
  96. Knight RT (1984) Decreased response to novel stimuli after prefrontal lesions in man. Electroencephalogr Clin Neurophysiol 59:9–20PubMedCrossRefGoogle Scholar
  97. Knight RT (1997) Distributed cortical network for visual attention. J Cogn Neurosci 9:75–91CrossRefGoogle Scholar
  98. Kok A, Ramautar JR, De Ruiter MB, Band GPH, Ridderinkhof KR (2004) ERP components associated with successful and unsuccessful stopping in a stop-signal task. Psychophysiology 41:9–20PubMedCrossRefGoogle Scholar
  99. Lenz D, Krauel K, Schadow J, Baving L, Duzel E, Herrmann CS (2008) Enhanced gamma-band activity in ADHD patients lacks correlation with memory performance found in healthy children. Brain Res 1235:117–132PubMedCrossRefGoogle Scholar
  100. Lincoln AJ, Courchesne E, Harms L, Allen M (1993) Contextual probability evaluation in autistic, receptive developmental language disorder, and control children: event-related brain potential evidence. J Autism Dev Disord 23:37–58PubMedCrossRefGoogle Scholar
  101. Luck SJ, Heinze HJ, Mangun GR, Hillyard SA (1990) Visual event-related potentials index focused attention within bilateral stimulus arrays, II: functional dissociation of P1 and N1 components. Electroencephalogr Clin Neurophysiol 75:528–542PubMedCrossRefGoogle Scholar
  102. Luu P, Flaisch T, Tucker DM (2000) Medial frontal cortex in action monitoring. J Neurosci 20:464–469PubMedGoogle Scholar
  103. Luu P, Tucker DM, Derryberry D, Reed M, Poulsen C (2003) Electrophysiological responses to errors and feedback in the process of action regulation. Psychol Sci 14:47–53PubMedCrossRefGoogle Scholar
  104. Markela-Lerenc J, Ille N, Kaiser S, Fiedler P, Mundt C, Weisbrod M (2004) Prefrontal-cingulate activation during executive control: which comes first? Cogn Brain Res 18:278–287CrossRefGoogle Scholar
  105. Mathalon DH, Fedor M, Faustman WO, Gray M, Askari N, Ford JM (2002) Response-monitoring dysfunction in schizophrenia: an event-related brain potential study. J Abnorm Psychol 111:22–41PubMedCrossRefGoogle Scholar
  106. Mecklinger A, Maess B, Opitz B, Pfeifer E, Cheyne D, Weinberg H (1998) A MEG analysis of the P300 in visual discrimination tasks. Electroencephalogr Clin Neurophysiol 108:45–56PubMedCrossRefGoogle Scholar
  107. Minshew NJ, Sweeney JA, Bauman ML, Webb SJ (2005) Neurologic aspects of autism. In: Volkmar FR, Paul R, Klin A, Cohen DJ (eds) Handbook of autism and pervasive developmental disorders. Wiley, New York, NY, pp 473–514Google Scholar
  108. Morgan B, Maybery M, Durkin K (2003) Weak central coherence, poor joint attention, and low verbal ability: independent deficits in early autism. Dev Psychol 39:646–656PubMedCrossRefGoogle Scholar
  109. Mottron L, Burack JA, Iarocci G, Belleville S, Enns JT (2003) Locally oriented perception with intact global processing among adolescents with high-functioning autism: evidence from multiple paradigms. J Child Psychol Psychiatry 44:904–913PubMedCrossRefGoogle Scholar
  110. Mountcastle VB (1997) The columnar organization of the neocortex. Brain 120:701–722PubMedCrossRefGoogle Scholar
  111. Mundy P (1995) Joint attention and social-emotional approach behavior in children with autism. Dev Psychopathol 7:63–82CrossRefGoogle Scholar
  112. Mundy P (2003) Annotation: the neural basis of social impairments in autism: the role of the dorsal medial-frontal cortex and anterior cingulate system. J Child Psychol Psychiatry 44:793–809PubMedCrossRefGoogle Scholar
  113. Mundy P, Neal AR (2000) Neural plasticity, joint attention, and a transactional social-orienting model of autism. Int Rev Res Ment Retard 23:139–168CrossRefGoogle Scholar
  114. Näätänen R, Michie PT (1979) Early selective-attention effects on the evoked potential: a critical review and reinterpretation. Biol Psychol 8:81–136PubMedCrossRefGoogle Scholar
  115. Näätänen R, Gaillard AWK, Mäntysalo S (1978) Early selective-attention effect on evoked potential reinterpreted. Acta Psychol 42:313–329CrossRefGoogle Scholar
  116. Näätänen R, Schröger E, Karakas S, Tervaniemi M, Paavilainen P (1993) Development of a memory trace for a complex sound in the human brain. Neuroreport 4:503–506PubMedCrossRefGoogle Scholar
  117. Nieuwenhuis S, Ridderinkhof KR, Blom J, Band GPH, Kok A (2001) Error-related brain potentials are differentially related to awareness of response errors: evidence from an antisaccade task. Psychophysiology 38:752–760PubMedCrossRefGoogle Scholar
  118. Oades RD, Walker MK, Geffen LB, Stern LM (1988) Event-related potentials in autistic and healthy children on an auditory choice reaction time task. Int J Psychophysiol 6:25–37PubMedCrossRefGoogle Scholar
  119. Oblak AL, Gibbs TT, Blatt GJ (2010) Decreased GABAB receptors in the cingulate cortex and fusiform gyrus in autism. J Neurochem 114:1414–1423PubMedGoogle Scholar
  120. Overbeek TJM, Nieuwenhuis S, Ridderinkhof KR (2005) Dissociable components of error processing: on the functional significance of the Pe vis-à-vis the ERN/Ne. J Psychophysiol 19:319–329CrossRefGoogle Scholar
  121. Ozonoff S (1997) Causal mechanisms of autism: unifying perspectives from an information-­processing framework. In: Cohen DJ, Volkmar FR (eds) Handbook of autism and pervasive developmental disorders. Wiley, New York, NY, pp 868–879Google Scholar
  122. Pellicano E, Gibson L, Maybery M, Durkin K, Badcock DR (2005) Abnormal global processing along the dorsal visual pathway in autism: a possible mechanism for weak visuospatial coherence? Neuropsychologia 43:1044–1053PubMedCrossRefGoogle Scholar
  123. Picton TW (1992) The P300 wave of the human event-related potential. J Clin Neurophysiol 9:456–479PubMedCrossRefGoogle Scholar
  124. Plaisted K, Saksida L, Alcántara J, Weisblatt E (2003) Towards an understanding of the mechanisms of weak central coherence effects: experiments in visual configural learning and auditory perception. Philos Trans Roy Soc Lond B Biol Sci 358:375–386CrossRefGoogle Scholar
  125. Polich J (2003) Theoretical overview of P3a and P3b. In: Polich J (ed) Detection of change: event-­related potential and fMRI findings. Kluwer, Boston, MA, pp 83–98Google Scholar
  126. Polich J (2007) Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol 118:2128–2148PubMedCrossRefGoogle Scholar
  127. Polich J, Herbst KL (2000) P300 as a clinical assay: rationale, evaluation, and findings. Int J Psychophysiol 38:3–19PubMedCrossRefGoogle Scholar
  128. Potts GF, Liotti M, Tucker DM, Posner MI (1996) Frontal and inferior temporal cortical activity in visual target detection: evidence from high spatially sampled event-related potentials. Brain Topogr 9:3–14CrossRefGoogle Scholar
  129. Potts GF, Dien J, Hartry-Speiser AL, McDougal LM, Tucker DM (1998) Dense sensor array topography of the event-related potential to task-relevant auditory stimuli. Electroencephalogr Clin Neurophysiol 106:444–456PubMedCrossRefGoogle Scholar
  130. Potts GF, Patel SH, Azzam PN (2004) Impact of instructed relevance on the visual ERP. Int J Psychophysiol 52:197–209PubMedCrossRefGoogle Scholar
  131. Pritchard WS (1981) Psychophysiology of P300. Psychol Bull 89:506–540PubMedCrossRefGoogle Scholar
  132. Pritchard WS (1986) Cognitive event-related potential correlates of schizophrenia. Psychol Bull 100:43–66PubMedCrossRefGoogle Scholar
  133. Ridderinkhof KR, Ullsperger M, Crone EA, Nieuwenhuis S (2004) The role of the medial frontal cortex in cognitive control. Science 306:443–447PubMedCrossRefGoogle Scholar
  134. Rippon G, Brock J, Brown CC, Boucher J (2007) Disordered connectivity in the autistic brain: challenges for the ‘new psychophysiology’. Int J Psychophysiol 63:164–172PubMedCrossRefGoogle Scholar
  135. Roberts LE, Rau H, Lutzenberger W, Birbaumer N (1994) Mapping P300 waves onto inhibition: Go/No-Go discrimination. Electroencephalogr Clin Neurophysiol 92:44–55PubMedCrossRefGoogle Scholar
  136. Rogers RL, Basile LFH, Papanicolaou AC, Eisenberg HM (1993) Magnetoencephalography reveals two distinct sources associated with late positive evoked potentials during visual oddball task. Cereb Cortex 3:163–169PubMedCrossRefGoogle Scholar
  137. Rubenstein JLR, Merzenich MM (2003) Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav 2:255–267PubMedCrossRefGoogle Scholar
  138. Ruble LA, Brown S (2003) Pervasive developmental disorders: autism. In: Wolraich ML (ed) Disorders of development and learning. BC Decker, Hamilton, ON, pp 249–266Google Scholar
  139. Ruchsow M, Spitzer M, Grön G, Grothe J, Kiefer M (2005) Error processing and impulsiveness in normals: evidence from event-related potentials. Cogn Brain Res 24:317–325CrossRefGoogle Scholar
  140. Russell J (1997) How executive disorders can bring about an inadequate “theory of mind”. In: Russell J (ed) Autism as an executive disorder. Oxford University Press, Oxford, pp 256–304Google Scholar
  141. Russell J, Jarrold C (1998) Error-correction problems in autism: evidence for a monitoring impairment? J Autism Dev Disord 28:177–188PubMedCrossRefGoogle Scholar
  142. Salisbury DF, Griggs CB, Shenton ME, McCarley RW (2004) The NoGo P300 ‘anteriorization’ effect and response inhibition. Clin Neurophysiol 115:1550–1558PubMedCrossRefGoogle Scholar
  143. Schmitz N, Rubia K, Daly EM, Smith AB, Williams S, Murphy DGM (2006) Neural correlates of executive function in autistic spectrum disorders. Biol Psychiatry 59:7–16PubMedCrossRefGoogle Scholar
  144. Scolnick B (2005) Effects of electroencephalogram biofeedback with Asperger’s syndrome. Int J Rehabil Res 28:159–163PubMedCrossRefGoogle Scholar
  145. Seri S, Cerquiglini A, Pisani F, Curatolo P (1999) Autism in tuberous sclerosis: evoked potential evidence for a deficit in auditory sensory processing. Clin Neurophysiol 110:1825–1830PubMedCrossRefGoogle Scholar
  146. Sichel AC, Fehmi LG, Goldstein DM (1995) Positive outcome with neurofeedback treatment in a case of mild autism. J Neurother 1:60–64CrossRefGoogle Scholar
  147. Sokhadze EM, El-Baz AS, Baruth J, Mathai G, Sears L, Casanova MF (2009a) Effects of low-­frequency repetitive transcranial magnetic stimulation (rTMS) on gamma frequency oscillations and event-related potentials during processing of illusory figures in autism. J Autism Dev Disord 39:619–634PubMedCrossRefGoogle Scholar
  148. Sokhadze EM, Baruth JM, Tasman A, Sears L, Mathai G, El-Baz A, Casanova MF (2009b) Event-­related potential study of novelty processing abnormalities in autism. Appl Psychophysiol Biofeedback 34:37–51PubMedCrossRefGoogle Scholar
  149. Sokhadze EM, Baruth JM, El-Baz A, Horrell T, Sokhadze G, Carroll T, Tasman A, Sears L, Casanova MF (2010a) Impaired error monitoring and correction function in autism. J Neurother 14:79–95PubMedCrossRefGoogle Scholar
  150. Sokhadze EM, Baruth JM, Tasman A, Mansoor M, Ramaswamy R, Sears L, Mathai G, El-Baz A, Casanova MF (2010b) Low-frequency repetitive transcranial magnetic stimulation (rTMS) affects event-related potential measures of novelty processing in autism. Appl Psychophysiol Biofeedback 35:147–161PubMedCrossRefGoogle Scholar
  151. Sokhadze EM, Baruth JM, Sears L, Sokhadze G, El-Baz A, Casanova MF (2012a) Prefrontal neuromodulation using rTMS improves error monitoring and correction function in autism. Appl Psychophysiol Biofeedback 37:91–102PubMedCrossRefGoogle Scholar
  152. Sokhadze EM, Baruth JM, Sears L, Sokhadze G, El-Baz A, Williams EL, Klapheke R, Casanova MF (2012b) Event-related potential study of attention regulation during illusory figure categorization task in ADHD, autism spectrum disorder, and typical children. J Neurother 16:12–31PubMedCrossRefGoogle Scholar
  153. Strik WK, Fallgatter AJ, Brandeis D, Pascual-Marqui RD (1998) Three-dimensional tomography of event-related potentials during response inhibition: evidence for phasic frontal lobe activation. Electroencephalogr Clin Neurophysiol 108:406–413PubMedCrossRefGoogle Scholar
  154. Tallon-Baudry C (2003) Oscillatory synchrony and human visual cognition. J Physiol Paris 97:355–363PubMedCrossRefGoogle Scholar
  155. Tallon-Baudry C, Bertrand O, Hénaff M-A, Isnard J, Fischer C (2005) Attention modulates gamma-band oscillations differently in the human lateral occipital cortex and fusiform gyrus. Cereb Cortex 15:654–662PubMedCrossRefGoogle Scholar
  156. Taylor SF, Stern ER, Gehring WJ (2007) Neural systems for error monitoring: recent findings and theoretical perspectives. Neuroscientist 13:160–172PubMedCrossRefGoogle Scholar
  157. Thakkar KN, Polli FE, Joseph RM, Tuch DS, Hadjikhani N, Barton JJS, Manoach DS (2008) Response monitoring, repetitive behaviour and anterior cingulate abnormalities in autism spectrum disorders (ASD). Brain 131:2464–2478PubMedCrossRefGoogle Scholar
  158. Townsend J, Courchesne E, Egaas B (1996) Slowed orienting of covert visual-spatial attention in autism: specific deficits associated with cerebellar and parietal abnormality. Dev Psychopathol 8:563–584CrossRefGoogle Scholar
  159. Townsend J, Courchesne E, Covington J, Westerfield M, Singer Harris N, Lyden P, Lowry TP, Press GA (1999) Spatial attention deficits in patients with acquired or developmental cerebellar abnormality. J Neurosci 19:5632–5643PubMedGoogle Scholar
  160. Townsend J, Westerfield M, Leaver E, Makeig S, Jung T-P, Pierce K, Courchesne E (2001) Event-­related brain response abnormalities in autism: evidence for impaired cerebello-frontal spatial attention networks. Cogn Brain Res 11:127–145CrossRefGoogle Scholar
  161. van Veen V, Carter CS (2002) The timing of action-monitoring processes in the anterior cingulate cortex. J Cogn Neurosci 14:593–602PubMedCrossRefGoogle Scholar
  162. Varela FJ, Lachaux J-P, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2:229–239PubMedCrossRefGoogle Scholar
  163. Verbaten MN, Roelofs JW, Van Engeland H, Kenemans JL, Slangen JL (1991) Abnormal visual event-related potentials of autistic children. J Autism Dev Disord 21:449–470PubMedCrossRefGoogle Scholar
  164. Villalobos ME, Mizuno A, Dahl BC, Kemmotsu N, Muller RA (2005) Reduced functional connectivity between V1 and inferior frontal cortex associated with visuomotor performance in autism. Neuroimage 25:916–925PubMedCrossRefGoogle Scholar
  165. Vlamings PHJM, Jonkman LM, Hoeksma MR, Van Engeland H, Kemner C (2008) Reduced error monitoring in children with autism spectrum disorder: an ERP study. Eur J Neurosci 28:399–406PubMedCrossRefGoogle Scholar
  166. Volkmar FR, Pauls D (2003) Autism. Lancet 362:1133–1141PubMedCrossRefGoogle Scholar
  167. Welchew DE, Ashwin C, Berkouk K, Salvador R, Suckling J, Baron-Cohen S, Bullmore E (2005) Functional disconnectivity of the medial temporal lobe in Asperger’s syndrome. Biol Psychiatry 57:991–998PubMedCrossRefGoogle Scholar
  168. West R (2003) Neural correlates of cognitive control and conflict detection in the Stroop and digit-­location tasks. Neuropsychologia 41:1122–1135PubMedCrossRefGoogle Scholar
  169. West R, Bowry R, McConville C (2004) Sensitivity of medial frontal cortex to response and nonresponse conflict. Psychophysiology 41:739–748PubMedCrossRefGoogle Scholar
  170. Williams EL, Casanova MF (2010) Autism and dyslexia: a spectrum of cognitive styles as defined by minicolumnar morphometry. Med Hypotheses 74:59–62PubMedCrossRefGoogle Scholar
  171. Yamazaki T, Kamijo K-i, Kenmochi A, Fukuzumi S-i, Kiyuna T, Takaki Y, Kuroiwa Y (2000) Multiple equivalent current dipole source localization of visual event-related potentials during oddball paradigm with motor response. Brain Topogr 12:159–175PubMedCrossRefGoogle Scholar
  172. Yeung N, Cohen JD (2006) The impact of cognitive deficits on conflict monitoring: predictable dissociations between the error-related negativity and N2. Psychol Sci 17:164–171PubMedCrossRefGoogle Scholar
  173. Yeung N, Botvinick MM, Cohen JD (2004) The neural basis of error detection: conflict monitoring and error-related negativity. Psychol Rev 111:931–959 BiographyPubMedCrossRefGoogle Scholar

Copyright information

© Springer New York 2013

Authors and Affiliations

  • Estate M. Sokhadze
    • 1
  • Joshua Baruth
    • 2
  • Allan Tasman
    • 3
  • Manuel F. Casanova
    • 4
  1. 1.Department of Psychiatry and Behavioral Sciences, Cognitive Neuroscience LaboratoryUniversity of LouisvilleLouisvilleUSA
  2. 2.Department of MedicineUniversity of LouisvilleLouisvilleUSA
  3. 3.Department of Psychiatry and Behavioral SciencesUniversity of LouisvilleLouisvilleUSA
  4. 4.Department of Psychiatry and Behavioral SciencesUniversity of LouisvilleLouisvilleUSA

Personalised recommendations