The Neuropathology of Autism



This chapter studies the processes or behaviors of cells and tissue that may be considered abnormal in the brains of autistic individuals. The chapter will be divided into sections describing gross and microscopic changes. Another section will describe alterations within the modular organization of the cerebral cortex (i.e., minicolumns) that may serve as useful clinicopathological correlates to autism. A commentary by a senior investigator will examine how postmortem research may be complemented by neuroimaging techniques.


  1. Avino TA, Hutsler JJ (2010) Abnormal cell patterning at the cortical gray-white matter boundary in autism spectrum disorders. Brain Res 1360:138–146PubMedCrossRefGoogle Scholar
  2. Aylward EH, Minshew NJ, Field K, Sparks B-F, Singh N (2002) Effects of age on brain volume and head circumference in autism. Neurology 59:175–183PubMedCrossRefGoogle Scholar
  3. Bailey A, Luthert PJ, Dean AF, Harding B, Janota I, Montgomery M, Rutter M, Lantos PL (1998) A clinicopathological study of autism. Brain 121:889–905PubMedCrossRefGoogle Scholar
  4. Bauman ML, Kemper TL (1985) Histoanatomic observations of the brain in early infantile autism. Neurology 35:866–874PubMedCrossRefGoogle Scholar
  5. Bauman ML, Kemper TL (1994) Neuroanatomic observations of the brain in autism. In: Bauman ML, Kemper TL (eds) The neurobiology of autism. Johns Hopkins University Press, Baltimore, pp 119–145Google Scholar
  6. Blamire AM, Rowe JG, Styles P, McDonald B (1999) Optimising imaging parameters for post mortem MR imaging of the human brain. Acta Radiol 40:593–597PubMedCrossRefGoogle Scholar
  7. Bobinski M, de Leon MJ, Wegiel J, De Santi SM, Convit A, Saint Louis LA, Rusinek H, Wisniewski HM (1999) The histological validation of post mortem magnetic resonance imaging-determined hippocampal volume in Alzheimer’s disease. Neuroscience 95:721–725CrossRefGoogle Scholar
  8. Buxhoeveden DP, Switala AE, Roy E, Casanova MF (2000) Quantitative analysis of cell columns in the cerebral cortex. J Neurosci Methods 97:7–17PubMedCrossRefGoogle Scholar
  9. Casanova MF (2004) White matter volume increase and minicolumns in autism. Ann Neurol 56:453PubMedCrossRefGoogle Scholar
  10. Casanova MF (2006) Neuropathological and genetic findings in autism: the significance of a putative minicolumnopathy. Neuroscientist 12:435–441PubMedCrossRefGoogle Scholar
  11. Casanova MF (2007) The neuropathology of autism. Brain Pathol 17:422–433PubMedCrossRefGoogle Scholar
  12. Casanova MF (2008) The significance of minicolumnar size variability in autism: a perspective from comparative anatomy. In: Zimmerman AW (ed) Autism: current theories and evidence. Humana Press, Totowa, NJ, pp 349–360Google Scholar
  13. Casanova MF (2012) The minicolumnopathy of autism. In: Hof PR, Buxbaum J (eds) Neuroscience of autism spectrum disorders. Elsevier, Amsterdam, pp 327–334Google Scholar
  14. Casanova MF, Buxhoeveden DP, Switala AE, Roy E (2002a) Asperger’s syndrome and cortical neuropathology. J Child Neurol 17:142–145PubMedCrossRefGoogle Scholar
  15. Casanova MF, Buxhoeveden DP, Switala AE, Roy E (2002b) Neuronal density and architecture (Gray Level Index) in the brains of autistic patients. J Child Neurol 17:515–521PubMedCrossRefGoogle Scholar
  16. Casanova MF, Buxhoeveden DP, Switala AE, Roy E (2002c) Minicolumnar pathology in autism. Neurology 58:428–432PubMedCrossRefGoogle Scholar
  17. Casanova MF, Buxhoeveden DP, Gomez J (2003) Disruption in the inhibitory architecture of the cell minicolumn: implications for autism. Neuroscientist 9:496–507PubMedCrossRefGoogle Scholar
  18. Casanova MF, Van Kooten IAJ, Switala AE, Van Engeland H, Heinsen H, Steinbusch HWM, Hof PR, Schmitz C (2006a) Abnormalities of cortical minicolumnar organization in the prefrontal lobes of autistic patients. Clin Neurosci Res 6:127–133CrossRefGoogle Scholar
  19. Casanova MF, Van Kooten IAJ, Switala AE, Van Engeland H, Heinsen H, Steinbusch HWM, Hof PR, Trippe J, Stone J, Schmitz C (2006b) Minicolumnar abnormalities in autism. Acta Neuropathol 112:287–303PubMedCrossRefGoogle Scholar
  20. Casanova MF, Trippe J, Tillquist C, Switala AE (2009a) Morphometric variability of minicolumns in the striate cortex of Homo sapiens, Macaca mulatta, and Pan troglodytes. J Anat 214:226–234PubMedCrossRefGoogle Scholar
  21. Casanova MF, El-Baz AS, Mott M, Mannheim GB, Hassan H, Fahmi R, Giedd J, Rumsey JM, Switala AE, Farag AA (2009b) Reduced gyral window and corpus callosum size in autism: possible macroscopic correlates of a minicolumnopathy. J Autism Dev Disord 39:751–764PubMedCrossRefGoogle Scholar
  22. Casanova MF, El-Baz AS, Vanbogaert E, Narahari P, Switala A (2010) A topographic study of minicolumnar core width by lamina comparison between autistic subjects and controls: possible minicolumnar disruption due to an anatomical element in-common to multiple laminae. Brain Pathol 20:451–458PubMedCrossRefGoogle Scholar
  23. Courchesne E, Yeung-Courchesne R, Press GA, Hesselink JR, Jernigan TL (1988) Hypoplasia of cerebellar vermal lobules VI and VII in autism. N Engl J Med 318:1349–1354PubMedCrossRefGoogle Scholar
  24. Courchesne E, Saitoh O, Yeung-Courchesne R, Press GA, Lincoln AJ, Haas RH, Schreibman LE (1994) Abnormality of cerebellar vermian lobules VI and VII in patients with infantile autism: identification of hypoplastic and hyperplastic subgroups with MR imaging. Am J Radiol 162:123–130Google Scholar
  25. Courchesne E, Karns CM, Davis HR, Ziccardi R, Carper RA, Tigue ZD, Chisum HJ, Moses P, Pierce K, Lord C, Lincoln AJ, Pizzo S, Schreibman LE, Haas RH, Akshoomoff NA, Courchesne RY (2001) Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology 57:245–254PubMedCrossRefGoogle Scholar
  26. Courchesne E, Mouton PR, Calhoun ME, Semendeferi K, Ahrens-Barbeau C, Hallet MJ, Carter Barnes C, Pierce K (2011) Neuron number and size in prefrontal cortex of children with autism. JAMA 306:2001–2010PubMedCrossRefGoogle Scholar
  27. DeFelipe J (2005) Reflections on the structure of the cortical minicolumn. In: Casanova MF (ed) Neocortical modularity and the cell minicolumn. Nova Biomedical, New York, pp 57–92Google Scholar
  28. Deisseroth K (2012) Optogenetics and psychiatry: applications, challenges, and opportunities. Biol Psychiatry 71:1030–1032PubMedCrossRefGoogle Scholar
  29. El-Baz AS, Casanova MF, Gimel’farb GL, Mott M, Switala AE (2007) Autism diagnostics by 3D texture analysis of cerebral white matter gyrifications. In: Ayache N, Ourselin S, Maeder AJ (eds) Medical image computing and computer-assisted intervention—MICCAI 2007, part II. Springer, New York, pp 882–890CrossRefGoogle Scholar
  30. Fahmi R, El-Baz AS, Abd El Munim HE, Farag AA, Casanova MF (2007) Classification techniques for autistic vs. typically developing brain using MRI data. In: Casanova MF (ed) Biomedical imaging: from nano to macro. IEEE, Piscataway, NJ, pp 1348–1351Google Scholar
  31. Fidler DJ, Bailey JN, Smalley SL (2000) Macrocephaly in autism and other pervasive developmental disorders. Dev Med Child Neurol 42:737–740PubMedCrossRefGoogle Scholar
  32. Fombonne E, Rogé B, Claverie J, Courty S, Frémolle J (1999) Microcephaly and macrocephaly in autism. J Autism Dev Disord 29:113–119PubMedCrossRefGoogle Scholar
  33. Goldberg J, Szatmari P, Nahmias C (1999) Imaging of autism: lessons from the past to guide studies in the future. Can J Psychiatry 44:793–801PubMedGoogle Scholar
  34. Hardan AY, Minshew NJ, Mallikarjuhn M, Keshavan MS (2001) Brain volume in autism. J Child Neurol 16:421–424PubMedGoogle Scholar
  35. Hardan AY, Jou RJ, Keshavan MS, Varma R, Minshew NJ (2004) Increased frontal cortical folding in autism: a preliminary MRI study. Psychiatry Res Neuroimag 131:263–268CrossRefGoogle Scholar
  36. Harding B, Copp AJ (1997) Malformations. In: Graham DI, Lantos PL (eds) Greenfield’s neuropathology. Arnold, London, pp 397–533Google Scholar
  37. Herbert MR, Ziegler DA, Deutsch CK, O’Brien LM, Lange N, Bakardjiev AI, Hodgson J, Adrien KT, Steele S, Makris N, Kennedy DN, Harris GJ, Caviness VS Jr (2003) Dissociations of cerebral cortex, subcortical and cerebral white matter volumes in autistic boys. Brain 126:1182–1192PubMedCrossRefGoogle Scholar
  38. Herbert MR, Ziegler DA, Makris N, Filipek PA, Kemper TL, Normandin JJ, Sanders HA, Kennedy DN, Caviness VS Jr (2004) Localization of white matter volume increase in autism and developmental language disorder. Ann Neurol 55:530–540PubMedCrossRefGoogle Scholar
  39. Hutsler JJ, Love T, Zhang H (2007) Histological and magnetic resonance imaging assessment of cortical layering and thickness in autism spectrum disorders. Biol Psychiatry 61:449–457PubMedCrossRefGoogle Scholar
  40. Kanner L (1943) Autistic disturbances of affective contact. Nerv Child 2:217–250Google Scholar
  41. Kemper TL (1988) Neuroanatomic studies of dyslexia and autism. In: Swann JW, Messer A (eds) Disorders of the developing nervous system: changing views on their origins, diagnoses, and treatments. Alan R. Liss, New York, pp 125–154Google Scholar
  42. Lainhart JE, Piven J, Wzorek M, Landa R, Santangelo SL, Coon H, Folstein SE (1997) Macrocephaly in children and adults with autism. J Am Acad Child Adolesc Psychiatry 36:282–290PubMedCrossRefGoogle Scholar
  43. Miller KL, Stagg CJ, Douaud G, Jbabdi S, Smith SM, Behrens TEJ, Jenkinson M, Chance SA, Esiri MM, Voets NL, Jenkinson N, Aziz TZ, Turner MR, Johansen-Berg H, McNab JA (2011) Diffusion imaging of whole, post-mortem human brains on a clinical MRI scanner. Neuroimage 57:167–181PubMedCrossRefGoogle Scholar
  44. Miller KL, McNab JA, Jbabdi S, Douaud G (2012) Diffusion tractography of post-mortem human brains: optimization and comparison of spin echo and steady-state free precession techniques. Neuroimage 59:2284–2297PubMedCrossRefGoogle Scholar
  45. Nowell MA, Hackney DB, Muralo AS, Coleman M (1990) Varied MR appearance of autism: fifty-three pediatric patients having the full autistic syndrome. Magn Reson Imaging 8:811–816PubMedCrossRefGoogle Scholar
  46. Pardo CA, Vargas DL, Zimmerman AW (2005) Immunity, neuroglia and neuroinflammation in autism. Int Rev Psychiatry 17:485–495PubMedCrossRefGoogle Scholar
  47. Piven J, Nehme E, Simon J, Barta P, Pearlson G, Folstein SE (1992) Magnetic resonance imaging in autism: measurement of the cerebellum, pons, and fourth ventricle. Biol Psychiatry 31:491–504PubMedCrossRefGoogle Scholar
  48. Piven J, Arndt S, Bailey J, Havercamp S, Andreasen NC, Palmer P (1995) An MRI study of brain size in autism. Am J Psychiatry 152:1145–1149PubMedGoogle Scholar
  49. Raymond GV, Bauman ML, Kemper TL (1995) Hippocampus in autism: a Golgi analysis. Acta Neuropathol 91:117–119CrossRefGoogle Scholar
  50. Roberts ISD, Benamore RE, Benbow EW, Lee SH, Harris JN, Jackson A, Mallett S, Patankar T, Peebles C, Roobottom C, Traill ZC (2012) Post-mortem imaging as an alternative to autopsy in the diagnosis of adult deaths: a validation study. Lancet 379:136–142PubMedCrossRefGoogle Scholar
  51. Schaefer GB, Thompson JN Jr, Bodensteiner JB, McConnell JM, Kimberling WJ, Gay CT, Dutton WD, Hutchings DC, Gray SB (1996) Hypoplasia of the cerebellar vermis in neurogenetic syndromes. Ann Neurol 39:382–385PubMedCrossRefGoogle Scholar
  52. Schlaug G, Schleicher A, Zilles K (1995) Quantitative analysis of the columnar arrangement of neurons in the human cingulate cortex. J Comp Neurol 351:441–452PubMedCrossRefGoogle Scholar
  53. Schumann CM, Amaral DG (2005) Stereological estimation of the number of neurons in the human amygdaloid complex. J Comp Neurol 491:320–329PubMedCrossRefGoogle Scholar
  54. Schumann CM, Amaral DG (2006) Stereological analysis of amygdala neuron number in autism. J Neurosci 26:7674–7679PubMedCrossRefGoogle Scholar
  55. Schumann CM, Nordahl CW (2011) Bridging the gap between MRI and postmortem research in autism. Brain Res 1380:175–186PubMedCrossRefGoogle Scholar
  56. Schumann CM, Buonocore MH, Amaral DG (2001) Magnetic resonance imaging of the post-mortem autistic brain. J Autism Dev Disord 31:561–568PubMedCrossRefGoogle Scholar
  57. Sparks B-F, Friedman SD, Shaw DW, Aylward EH, Echelard D, Artru AA, Maravilla KR, Giedd JN, Munson J, Dawson G, Dager SR (2002) Brain structural abnormalities in young children with autism spectrum disorder. Neurology 59:158–159CrossRefGoogle Scholar
  58. Stevenson RE, Schroer RJ, Skinner C, Fender D, Simensen RJ (1997) Autism and macrocephaly. Lancet 349:1744–1745PubMedCrossRefGoogle Scholar
  59. Szentágothai J, Arbib MA (1975) Conceptual models of neural organization. MIT Press, Cambridge, MAGoogle Scholar
  60. Vargas DL, Nascimbene C, Krishan C, Zimmerman AW, Pardo CA (2005) Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 57:67–81PubMedCrossRefGoogle Scholar
  61. Wegiel J, Kuchna I, Nowicki K, Imaki H, Wegiel J, Marchi E, Ma SY, Chauhan A, Chauhan V, Wierzba Bobrowicz T, De Leon M, Saint Louis LA, Cohen IL, London E, Brown WT, Wisniewski T (2010) The neuropathology of autism: defects of neurogenesis and neuronal migration, and dysplastic changes. Acta Neuropathol 119:755–770PubMedCrossRefGoogle Scholar
  62. Williams EL, Casanova MF (2012) Hyperlexia and dyslexia in autism: hitting a moving target. J Spec Educ Rehabil 13(3):39–54Google Scholar
  63. Woodhouse W, Bailey A, Rutter M, Bolton PF, Baird G, Le Couteur A (1996) Head circumference in autism and other pervasive developmental disorders. J Child Psychol Psychiatry 37:655–671CrossRefGoogle Scholar
  64. Zimmerman AW, Jyonouchi H, Comi AM, Connors SL, Milstien S, Varsou A, Heyes MP (2005) Cerebrospinal fluid and serum markers of inflammation in autism. Pediatr Neurol 33:195–201 BiblographyPubMedCrossRefGoogle Scholar

Copyright information

© Springer New York 2013

Authors and Affiliations

  1. 1.Department of Psychiatry and Behavioral SciencesUniversity of LouisvilleLouisvilleUSA
  2. 2.Autism Tissue Program, Autism SpeaksSan DiegoUSA

Personalised recommendations