Introduction to Neuropathology

  • Manuel F. Casanova
  • Paul H. Patterson
  • Eric London


Neuropathology is the study of nervous system tissue in terms of either macro- or microscopic alterations. In this chapter we will concentrate on those microscopic alterations at the cellular (e.g., regressive changes, lipofuscin accumulation) and tissue level (e.g., necrosis) that have been variously claimed to be of relevance to autism. The discussions will draw upon the perspective of the author as to their adequacy for postmortem research. Commentaries by senior investigators will discuss the value of neuropathological studies, especially as compared to other research endeavors.


Glial Fibrillary Acidic Protein Apply Behavior Analysis Regressive Change Purkinje Cell Loss Lipofuscin Accumulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aboitiz F (1999) Evolution of isocortical organization: a tentative scenario including roles of reelin, p35/cdk5 and the subplate zone. Cereb Cortex 9:655–661PubMedCrossRefGoogle Scholar
  2. Akil H, Brenner S, Kandel E, Kendler KS, King M-C, Scolnick E, Watson JD, Zoghbi HY (2010) The future of psychiatric research: genomes and neural circuits. Science 327:1580–1581PubMedCrossRefGoogle Scholar
  3. Atladóttir HÓ, Thorsen P, Østergaard L, Schendel DE, Lemcke S, Abdallah MW, Parner ET (2010) Maternal infection requiring hospitalization during pregnancy and autism spectrum disorders. J Autism Dev Disord 40:1423–1430PubMedCrossRefGoogle Scholar
  4. Bailey P, Von Bonin G (1951) The isocortex of man. University of Illinois Press, UrbanaGoogle Scholar
  5. Bailey A, Luthert PJ, Dean AF, Harding B, Janota I, Montgomery M, Rutter M, Lantos PL (1998) A clinicopathological study of autism. Brain 121:889–905PubMedCrossRefGoogle Scholar
  6. Bauman ML, Kemper TL (1985) Histoanatomic observations of the brain in early infantile autism. Neurology 35:866–874PubMedCrossRefGoogle Scholar
  7. Bauman ML, Kemper TL (1994) Neuroanatomic observations of the brain in autism. In: Bauman ML, Kemper TL (eds) The neurobiology of autism. Johns Hopkins University Press, Baltimore, MD, pp 119–145Google Scholar
  8. Brodmann K (1909) Vergleichende Lokalisationslehre der Großhirnrinde: in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth, LeipzigGoogle Scholar
  9. Brown AS, Derkits EJ (2009) Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. Am J Psychiatry 167:261–280CrossRefGoogle Scholar
  10. Brown AS, Sourander A, Hinkka-Yli-Salomäki S, McKeague IW, Sundvall J, Surcel HM (2013) Elevated maternal C-reactive protein and autism in a national birth cohort. Mol Psychiatry. doi:  10.1038/mp.2012.197
  11. Campbell AW (1905) Histological studies on the localisation of cerebral function. Cambridge University Press, CambridgeGoogle Scholar
  12. Casanova MF (2005) An apologia for a paradigm shift in the neurosciences. In: Casanova MF (ed) Neocortical modularity and the cell minicolumn. Nova Biomedical, New York, NY, pp 33–55Google Scholar
  13. Casanova MF (2008) The significance of minicolumnar size variability in autism: a perspective from comparative anatomy. In: Zimmerman AW (ed) Autism: current theories and evidence. Humana, Totowa, NJ, pp 349–360Google Scholar
  14. Casanova MF (2010) Cortical organization: anatomical findings based on systems theory. Transl Neurosci 1:62–71PubMedCrossRefGoogle Scholar
  15. Casanova MF, Araque JM (2003) Mineralization of the basal ganglia: implications for neuropsychiatry, pathology and neuroimaging. Psychiatry Res 121:59–87PubMedCrossRefGoogle Scholar
  16. Casanova MF, Kleinman JE (1990) The neuropathology of schizophrenia: a critical assessment of research methodologies. Biol Psychiatry 27:353–362PubMedCrossRefGoogle Scholar
  17. Casanova MF, Trippe J 2nd, Switala A (2007) A temporal continuity to the vertical organization of the human cortex. Cereb Cortex 17(1):130–137PubMedCrossRefGoogle Scholar
  18. Casanova MF, Van Kooten IAJ, Switala AE, Van Engeland H, Heinsen H, Steinbusch HWM, Hof PR, Trippe J, Stone J, Schmitz C (2006) Minicolumnar abnormalities in autism. Acta Neuropathol 112:287–303PubMedCrossRefGoogle Scholar
  19. Casanova MF, El-Baz AS, Switala AE (2011) Laws of conservation as related to brain growth, aging, and evolution: symmetry of the minicolumn. Front Neuroanat 5:66PubMedCrossRefGoogle Scholar
  20. Darby JK (1976) Neuropathologic aspects of psychosis in children. J Autism Childhood Schizophr 6:339–352CrossRefGoogle Scholar
  21. Doty RW (2007) Cortical commisural connections in primates. In: Kaas JH, Krubitzer LA (eds) Evolution of nervous systems: a comprehensive reference, vol 4, Primates. Elsevier, Amsterdam, pp 277–289CrossRefGoogle Scholar
  22. Goines PE, Croen LA, Braunschweig D, Yoshida CK, Grether JK, Hansen R, Kharrazi M, Ashwood P, Van de Water J (2011) Increased midgestational IFN-γ, IL-4 and IL-5 in women bearing a child with autism: a case–control study. Mol Autism 2:13PubMedCrossRefGoogle Scholar
  23. Guérin P, Lyon G, Barthélémy C, Sostak E, Chevrollier V, Garreau B, Lelord G (1996) Neuropathological study of a case of autistic syndrome with severe mental retardation. Dev Med Child Neurol 38:203–211PubMedCrossRefGoogle Scholar
  24. Hallmayer J, Cleveland S, Torres A, Phillips J, Cohen B, Torigoe T, Miller J, Fedele A, Collins J, Smith K, Lotspeich L, Croen LA, Ozonoff S, Lajonchere C, Grether JK, Risch N (2011) Genetic heritability and shared environmental factors among twin pairs with autism. Arch Gen Psychiatry 68:1095–1102PubMedCrossRefGoogle Scholar
  25. Harrison JE, Bolton PF (1997) Annotation: tuberous sclerosis. J Child Psychol Psychiatry 38:603–614PubMedCrossRefGoogle Scholar
  26. Husain J, Juurlink BHJ (1995) Oligodendroglial precursor cell susceptibility to hypoxia is related to poor ability to cope with reactive oxygen species. Brain Res 698:86–94PubMedCrossRefGoogle Scholar
  27. Järlestedt K, Rousset CI, Faiz M, Wilhelmsson U, Ståhlberg A, Sourkova H, Pekna M, Mallard C, Hagberg H, Pekny M (2010) Attenuation of reactive gliosis does not affect infarct volume in neonatal hypoxic-ischemic brain injury in mice. PLoS One 5:e10397PubMedCrossRefGoogle Scholar
  28. Johnston-Wilson NL, Sims CD, Hofmann J-P, Anderson L, Shore AD, Torrey EF, Yolken RH, Stanley Neuropathology Consortium (2000) Disease-specific alterations in frontal cortex brain proteins in schizophrenia, bipolar disorder, and major depressive disorder. Mol Psychiatry 5:142–149PubMedCrossRefGoogle Scholar
  29. Kanazawa I (2001) How do neurons die in neurodegenerative diseases? Trends Mol Med 7:339–344PubMedCrossRefGoogle Scholar
  30. Kennard MA (1936) Age and other factors in motor recovery from precentral lesions in monkeys. Am J Physiol 115:138–146Google Scholar
  31. Konigsmark BW, Murphy EA (1972) Volume of the ventral cochlear nucleus in man: its relationship to neural population and age. J Neuropathol Exp Neurol 31:304–316PubMedCrossRefGoogle Scholar
  32. Kothur K, Ray M, Malhi P (2008) Correlation of autism with temporal tubers in tuberous sclerosis complex. Neurol India 56:74–76PubMedCrossRefGoogle Scholar
  33. Krmpotic-Nemanic J, Kostovic I, Nemanic D (1984) Prenatal and perinatal development of radial cell columns in the human auditory cortex. Acta Otolaryngol 97(5–6):489–495Google Scholar
  34. Lainhart JE, Piven J, Wzorek M, Landa R, Santangelo SL, Coon H, Folstein SE (1997) Macrocephaly in children and adults with autism. J Am Acad Child Adolesc Psychiatry 36:282–290PubMedCrossRefGoogle Scholar
  35. Lashley KS, Clark G (1946) The cytoarchitecture of the cerebral cortex of Ateles: a critical examination of architectonic studies. J Comp Neurol 85:223–305PubMedCrossRefGoogle Scholar
  36. López-Hurtado E, Prieto JJ (2008) A microscopic study of language-related cortex in autism. Am J Biochem Biotechnol 4:130–145CrossRefGoogle Scholar
  37. Marín-Padilla M (1995) Prenatal development of fibrous (white matter), protoplasmic (gray matter), and layer I astrocytes in the human cerebral cortex: a golgi study. J Comp Neurol 357:554–572PubMedCrossRefGoogle Scholar
  38. Marín-Padilla M (2010) The human brain: prenatal development and structure. Springer, HeidelbergGoogle Scholar
  39. Morgan JT, Chana G, Pardo CA, Achim C, Semendeferi K, Buckwalter J, Courchesne E, Everall IP (2010) Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biol Psychiatry 68:368–376PubMedCrossRefGoogle Scholar
  40. Morgan JT, Chana G, Abramson I, Semendeferi K, Courchesne E, Everall IP (2012) Abnormal microglial-neuronal spatial organization in the dorsolateral prefrontal cortex in autism. Brain Res 1456:72–81PubMedCrossRefGoogle Scholar
  41. Mukaetova-Ladinska EB, Arnold H, Jaros E, Perry RH, Perry EK (2004) Depletion of MAP2 expression and laminar cytoarchitectonic changes in dorsolateral prefrontal cortex in adult autistic individuals. Neuropathol Appl Neurobiol 30:615–623PubMedCrossRefGoogle Scholar
  42. Quester R, Schröder R (1997) The shrinkage of the human brain stem during formalin fixation and embedding in paraffin. J Neurosci Methods 75:81–89PubMedCrossRefGoogle Scholar
  43. Raymond GV, Bauman ML, Kemper TL (1995) Hippocampus in autism: a golgi analysis. Acta Neuropathol 91:117–119CrossRefGoogle Scholar
  44. Roberts GW (1991) Schizophrenia: a neuropathological perspective. Br J Psychiatry 158:8–17PubMedCrossRefGoogle Scholar
  45. Roessmann U, Gambetti P (1986) Pathological reaction of astrocytes in perinatal brain injury: immunohistochemical study. Acta Neuropathol 70:302–307PubMedCrossRefGoogle Scholar
  46. Rosenberg RE, Law JK, Yenokyan G, McGready J, Kaufmann WE, Law PA (2009) Characteristics and concordance of autism spectrum disorders among 277 twin pairs. Arch Pediatr Adolesc Med 163:907–914PubMedCrossRefGoogle Scholar
  47. Terman A (2001) Garbage catastrophe theory of aging: imperfect removal of oxidative damage? Redox Rep 6:15–26PubMedCrossRefGoogle Scholar
  48. Tissir F, Lambert de Rouvroit C, Goffinet AM (2002) The role of reelin in the development and evolution of the cerebral cortex. Braz J Med Biol Res 35:1473–1484PubMedCrossRefGoogle Scholar
  49. Van Kooten IAJ, Palmen SJMC, Von Cappeln P, Steinbusch HWM, Korr H, Heinsen H, Hof PR, Van Engeland H, Schmitz C (2008) Neurons in the fusiform gyrus are fewer and smaller in autism. Brain 131:987–999PubMedCrossRefGoogle Scholar
  50. Vargas DL, Nascimbene C, Krishan C, Zimmerman AW, Pardo CA (2005) Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 57:67–81PubMedCrossRefGoogle Scholar
  51. Von Economo C, Koskinas GN (1925) Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. Springer, Wien, ViennaGoogle Scholar
  52. Wegiel J, Kuchna I, Nowicki K, Imaki H, Wegiel J, Marchi E, Ma SY, Chauhan A, Chauhan V, Wierzba Bobrowicz T, De Leon M, Saint Louis LA, Cohen IL, London E, Brown WT, Wisniewski T (2010) The neuropathology of autism: defects of neurogenesis and neuronal migration, and dysplastic changes. Acta Neuropathol 119:755–770PubMedCrossRefGoogle Scholar
  53. West MJ (1993) New stereological methods for counting neurons. Neurobiol Aging 14:275–285PubMedCrossRefGoogle Scholar
  54. Whitney ER, Kemper TL, Bauman ML, Rosene DL, Blatt GJ (2008) Cerebellar Purkinje cells are reduced in a subpopulation of autistic brains: a stereological experiment using calbindin-D28k. Cerebellum 7:406–416 BiographyPubMedCrossRefGoogle Scholar

Copyright information

© Springer New York 2013

Authors and Affiliations

  • Manuel F. Casanova
    • 1
  • Paul H. Patterson
    • 2
  • Eric London
    • 3
  1. 1.Department of PsychiatryUniversity of LouisvilleLouisvilleUSA
  2. 2.151B Beckman Behavioral LaboratoriesCalifornia Institute of TechnologyPasadenaUSA
  3. 3.Autism Treatment Research LaboratoryInstitute for Basic Research in Developmental DisabilitiesStaten IslandUSA

Personalised recommendations